
MarÃ-a de la Paz Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9169917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nature Structural and Molecular Biology, 2011, 18, 395-400.	8.2	131
2	MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and Plastic Developmental Responses in Plants. Frontiers in Plant Science, 2019, 10, 853.	3.6	119
3	The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO Journal, 2013, 32, 2884-2895.	7.8	87
4	The cell cycle and seed germination. Seed Science Research, 2003, 13, 113-130.	1.7	83
5	Hormone symphony during root growth and development. Developmental Dynamics, 2012, 241, 1867-1885.	1.8	76
6	<i>Arabidopsis</i> ORC1 is a PHD-containing H3K4me3 effector that regulates transcription. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2065-2070.	7.1	72
7	XAANTAL2 (AGL14) Is an Important Component of the Complex Gene Regulatory Network that Underlies Arabidopsis Shoot Apical Meristem Transitions. Molecular Plant, 2015, 8, 796-813.	8.3	68
8	The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity. New Phytologist, 2015, 208, 684-694.	7.3	60
9	<scp>MADS</scp> â€box genes underground becoming mainstream: plant root developmental mechanisms. New Phytologist, 2019, 223, 1143-1158.	7.3	57
10	The genes encoding Arabidopsis ORC subunits are E2F targets and the two ORC1 genes are differently expressed in proliferating and endoreplicating cells. Nucleic Acids Research, 2005, 33, 5404-5414.	14.5	53
11	A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle. PLoS Computational Biology, 2015, 11, e1004486.	3.2	42
12	Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 5716.	4.1	41
13	Differential response of PCNA and Cdk-A proteins and associated kinase activities to benzyladenine and abscisic acid during maize seed germination. Journal of Experimental Botany, 2005, 56, 515-523.	4.8	39
14	A Molecular Switch for Initiating Cell Differentiation in Arabidopsis. Current Biology, 2011, 21, 999-1008.	3.9	36
15	Chromatin dynamics during the plant cell cycle. Seminars in Cell and Developmental Biology, 2008, 19, 537-546.	5.0	34
16	Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. Frontiers in Plant Science, 2021, 12, 659155.	3.6	30
17	Impact of nucleosome dynamics and histone modifications on cell proliferation during Arabidopsis development. Heredity, 2010, 105, 80-91.	2.6	28
18	Regulating DNA Replication in Plants. Cold Spring Harbor Perspectives in Biology, 2012, 4, a010140-a010140.	5.5	27

#	Article	IF	CITATIONS
19	Progress in understanding DNA replication control. Plant Science, 2011, 181, 203-209.	3.6	25
20	Complexes of D-type cyclins with CDKs during maize germination. Journal of Experimental Botany, 2013, 64, 5661-5671.	4.8	25
21	PCNA protein associates to Cdk-A type protein kinases in germinating maize. Plant Molecular Biology, 2002, 50, 167-175.	3.9	24
22	Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells, 2020, 9, 2576.	4.1	22
23	Proliferating cell nuclear antigen expression in maize seed development and germination: Regulation by phytohormones and its association with putative cell cycle proteins. Physiologia Plantarum, 2000, 110, 127-134.	5.2	21
24	Identifying the transition to the maturation zone in three ecotypes of <i>Arabidopsis thaliana</i> roots. Communicative and Integrative Biology, 2018, 11, e1395993.	1.4	19
25	Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 858.	3.6	18
26	Natural Root Cellular Variation in Responses to Osmotic Stress in Arabidopsis thaliana Accessions. Genes, 2019, 10, 983.	2.4	17
27	<i>ULTRAPETALA1</i> maintains <i>Arabidopsis</i> root stem cell niche independently of <i>ARABIDOPSIS TRITHORAX1</i> . New Phytologist, 2020, 225, 1261-1272.	7.3	16
28	Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach. Developmental Dynamics, 2015, 244, 1074-1095.	1.8	15
29	The MADS-box <i>XAANTAL1</i> increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components. Annals of Botany, 2016, 118, 787-796.	2.9	15
30	A system-level mechanistic explanation for asymmetric stem cell fates: Arabidopsis thaliana root niche as a study system. Scientific Reports, 2020, 10, 3525.	3.3	15
31	E2F–DP Transcription Factors. , 0, , 138-163.		10
32	When ABC becomes ACB. Journal of Experimental Botany, 2012, 63, 2377-2395.	4.8	10
33	Novel insights into the plant histone code: Lessons from ORC1. Epigenetics, 2009, 4, 205-208.	2.7	8
34	Arabidopsis thaliana thymidine kinase 1a is ubiquitously expressed during development and contributes to confer tolerance to genotoxic stress. Plant Molecular Biology, 2015, 87, 303-315.	3.9	8
35	The Epigenetic Faces of ULTRAPETALA1. Frontiers in Plant Science, 2021, 12, 637244.	3.6	8
36	Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. International Journal of Molecular Sciences, 2020, 21, 4925.	4.1	6

#	Article	IF	CITATIONS
37	Hormonal Regulation of Stem Cell Proliferation at the Arabidopsis thaliana Root Stem Cell Niche. Frontiers in Plant Science, 2021, 12, 628491.	3.6	5
38	Live Plant Cell Tracking: Fiji plugin to analyze cell proliferation dynamics and understand morphogenesis. Plant Physiology, 2022, 188, 846-860.	4.8	5
39	Endoreduplication control during plant development. SEB Experimental Biology Series, 2008, 59, 167-87.	0.1	5
40	Unraveling the role of epigenetic regulation in asymmetric cell division during plant development. Journal of Experimental Botany, 2021, , .	4.8	3
41	PCNA-associated proteins during maize germination , 2003, , 161-169.		0