
Yanfang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9169891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low UVB Fluences Augment Microvesicle Particle Generation in Keratinocytes. Photochemistry and Photobiology, 2022, 98, 248-253.	2.5	5
2	Ultraviolet B Irradiation Alters the Level and miR Contents of Exosomes Released by Keratinocytes in Diabetic Condition. Photochemistry and Photobiology, 2022, 98, 1122-1130.	2.5	7
3	Rab27a deletion impairs the therapeutic potential of endothelial progenitor cells for myocardial infarction. Molecular and Cellular Biochemistry, 2021, 476, 797-807.	3.1	8
4	Exosomes from miRNAâ€126â€modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neuroscience and Therapeutics, 2020, 26, 1255-1265.	3.9	74
5	Plasma endothelial microvesicles and their carrying miRNAâ€155 serve as biomarkers for ischemic stroke. Journal of Neuroscience Research, 2020, 98, 2290-2301.	2.9	27
6	C6-ceramide treatment inhibits the proangiogenic activity of multiple myeloma exosomes via the miR-29b/Akt pathway. Journal of Translational Medicine, 2020, 18, 298.	4.4	15
7	Thermal Burn Injury Generates Bioactive Microvesicles: Evidence for a Novel Transport Mechanism for the Lipid Mediator Platelet-Activating Factor (PAF) That Involves Subcellular Particles and the PAF Receptor. Journal of Immunology, 2020, 205, 193-201.	0.8	17
8	miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Research and Therapy, 2020, 11, 260.	5.5	75
9	Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Experimental Neurology, 2020, 330, 113325.	4.1	60
10	Implication of MicroRNA503 in Brain Endothelial Cell Function and Ischemic Stroke. Translational Stroke Research, 2020, 11, 1148-1164.	4.2	30
11	Enrichment of miR-126 enhances the effects of endothelial progenitor cell–derived microvesicles on modulating MC3T3-E1 cell function via Erk1/2-Bcl-2 signalling pathway. Prion, 2019, 13, 106-115.	1.8	10
12	Exosomes are the novel players involved in the beneficial effects of exercise on type 2 diabetes. Journal of Cellular Physiology, 2019, 234, 14896-14905.	4.1	23
13	Liver kinaseÃ ⁻ Â;¼2B1 restoration promotes exosome secretion and motility of lung cancer cells. Oncology Reports, 2018, 39, 376-382.	2.6	27
14	Extracellular vesicles as novel biomarkers and pharmaceutic targets of diseases. Acta Pharmacologica Sinica, 2018, 39, 499-500.	6.1	17
15	ACE2â€EPCâ€EXs protect ageing ECs against hypoxia/reoxygenationâ€induced injury through the miRâ€18a/Nox2/ROS pathway. Journal of Cellular and Molecular Medicine, 2018, 22, 1873-1882.	3.6	60
16	Moderate Exercise Enhances Endothelial Progenitor Cell Exosomes Release and Function. Medicine and Science in Sports and Exercise, 2018, 50, 2024-2032.	0.4	75
17	Noncoding RNAs and Stem Cell Function and Therapy. Stem Cells International, 2018, 2018, 1-2.	2.5	3
18	NLRP3: A Novel Mediator in Cardiovascular Disease. Journal of Immunology Research, 2018, 2018, 1-8.	2.2	128

YANFANG CHEN

#	Article	IF	CITATIONS
19	Mechanism and Therapies of Oxidative Stress-Mediated Cell Death in Ischemia Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-2.	4.0	36
20	Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. International Journal of Molecular Medicine, 2018, 42, 3631-3639.	4.0	10
21	UVBâ€generated Microvesicle Particles: A Novel Pathway by Which a Skinâ€specific Stimulus Could Exert Systemic Effects. Photochemistry and Photobiology, 2017, 93, 937-942.	2.5	21
22	Quercetin Inhibits Pulmonary Arterial Endothelial Cell Transdifferentiation Possibly by Akt and Erk1/2 Pathways. BioMed Research International, 2017, 2017, 1-8.	1.9	14
23	NPC-EXs Alleviate Endothelial Oxidative Stress and Dysfunction through the miR-210 Downstream Nox2 and VEGFR2 Pathways. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	28
24	Multiple Myeloma-Derived Exosomes Regulate the Functions of Mesenchymal Stem Cells Partially via Modulating miR-21 and miR-146a. Stem Cells International, 2017, 2017, 1-9.	2.5	51
25	Strategies to Improve the Migration of Mesenchymal Stromal Cells in Cell Therapy. Translational Neuroscience and Clinics, 2017, 3, 159-175.	0.1	5
26	The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells. Stem Cells International, 2016, 2016, 1-12.	2.5	49
27	Stem Cell-Released Microvesicles and Exosomes as Novel Biomarkers and Treatments of Diseases. Stem Cells International, 2016, 2016, 1-2.	2.5	8
28	<scp>UVB</scp> Generates Microvesicle Particle Release in Part Due to Plateletâ€activating Factor Signaling. Photochemistry and Photobiology, 2016, 92, 503-506.	2.5	25
29	The effects of microvesicles on endothelial progenitor cells are compromised in type 2 diabetic patients via downregulation of the miR-126/VEGFR2 pathway. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E828-E837.	3.5	57
30	Analyses of Endothelial Cells and Endothelial Progenitor Cells Released Microvesicles by Using Microbead and Q-dot Based Nanoparticle Tracking Analysis. Scientific Reports, 2016, 6, 24679.	3.3	23
31	Transcutaneous electrical acupoint stimulation alleviates adverse cardiac remodeling induced by overload training in rats. Journal of Applied Physiology, 2016, 120, 1269-1276.	2.5	5
32	Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway. Molecular Brain, 2016, 9, 12.	2.6	49
33	Microvesicles Derived from Inflammation-Challenged Endothelial Cells Modulate Vascular Smooth Muscle Cell Functions. Frontiers in Physiology, 2016, 7, 692.	2.8	12
34	Oxidative Stress-Mediated Reperfusion Injury 2014. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-2.	4.0	4
35	Circulating CD133+ CD34+ Progenitor Cells and Plasma Stromal-Derived Factor-1Alpha: Predictive Role in Ischemic Stroke Patients. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 319-326.	1.6	10
36	5-Aminolevulinic acid combined with sodium ferrous citrate ameliorates H ₂ O ₂ -induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway. American Journal of Physiology - Cell Physiology, 2015, 308, C665-C672.	4.6	33

YANFANG CHEN

#	Article	IF	CITATIONS
37	Angiotensin-(1–7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Experimental Cell Research, 2015, 336, 58-65.	2.6	70
38	The Role of Circulating Platelets Microparticles and Platelet Parameters in Acute Ischemic Stroke Patients. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 2313-2320.	1.6	85
39	Angiotensin-(1–7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFаB inflammatory pathway. Vascular Pharmacology, 2015, 73, 115-123.	2.1	54
40	Oxidative Stress-Mediated Reperfusion Injury: Mechanism and Therapies. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-2.	4.0	32
41	The Preliminary Study of Effects of Tolfenamic Acid on Cell Proliferation, Cell Apoptosis, and Intracellular Collagen Deposition in Keloid Fibroblasts <i>In Vitro</i> . Dermatology Research and Practice, 2014, 2014, 1-8.	0.8	5
42	Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology, 2014, 79, 550-558.	4.1	83
43	EPC-Derived Microvesicles Protect Cardiomyocytes from Ang II-Induced Hypertrophy and Apoptosis. PLoS ONE, 2014, 9, e85396.	2.5	63
44	Abstract 339: Ang-(1-7) Counteracts Ang II in Regulating Cerebrovascular Endothelial Cell Function and Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
45	Hypoxia/Aglycemia-Induced Endothelial Barrier Dysfunction and Tight Junction Protein Downregulation Can Be Ameliorated by Citicoline. PLoS ONE, 2013, 8, e82604.	2.5	48
46	Effects of Endothelial Progenitor Cell-Derived Microvesicles on Hypoxia/Reoxygenation-Induced Endothelial Dysfunction and Apoptosis. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-9.	4.0	92
47	Blockade of Brain Angiotensin II AT1 Receptors Reduces Brain Damage from Ischemic Stroke in Mice. FASEB Journal, 2007, 21, A1168.	0.5	0
48	Brain angiotensin converting enzymes: Evaluation using mass spectrometry and Western blot FASEB Journal, 2007, 21, A798.	0.5	0
49	Angiotensin AT1a shRNA Demonstrates Interactions between Brainstem Angiotensin AT1a Receptors and Angiotensin Converting Enzyme 2. FASEB Journal, 2007, 21, A890.	0.5	0
50	Salt consumption increases blood pressure and abolishes the light/dark rhythm in angiotensin AT1a receptor deficient mice. Physiology and Behavior, 2006, 88, 95-100.	2.1	10
51	Adenovirus-Mediated Small-Interference RNA for In Vivo Silencing of Angiotensin AT 1a Receptors in Mouse Brain. Hypertension, 2006, 47, 230-237.	2.7	47
52	Evidence of Angiotensin Converting Enzyme 2 in Mouse Brain: in situ Hybridization and Mass Spectrometry Studies. FASEB Journal, 2006, 20, A688.	0.5	0
53	High Fructose Diet in Mice Activates Brainstem Angiotensin AT1a and Catecholaminergic Systems. FASEB Journal, 2006, 20, A300.	0.5	0
54	Cardiovascular autonomic control in mice lacking angiotensin AT1a receptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1071-R1077.	1.8	33

YANFANG CHEN

#	Article	IF	CITATIONS
55	Enhanced osmotic responsiveness in angiotensin AT1a receptor deficient mice: evidence for a role for AT1b receptors. Experimental Physiology, 2005, 90, 739-746.	2.0	10
56	Dietary sodium regulates angiotensin AT1a and AT1b mRNA expression in mouse brain. Experimental Neurology, 2004, 188, 238-245.	4.1	16
57	Osmotic regulation of angiotensin AT1 receptor subtypes in mouse brain. Brain Research, 2003, 965, 35-44.	2.2	34
58	Differentiation of Brain Angiotensin Type 1a and 1b Receptor mRNAs. Hypertension, 2001, 37, 692-697.	2.7	28