
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9169832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene editing reverses arrhythmia susceptibility in humanized PLN-R14del mice: modelling a European cardiomyopathy with global impact. Cardiovascular Research, 2022, 118, 3140-3150.	3.8	23
2	Matricellular Protein CCN5 Gene Transfer Ameliorates Cardiac and Skeletal Dysfunction in mdx/utrn (±) Haploinsufficient Mice by Reducing Fibrosis and Upregulating Utrophin Expression. Frontiers in Cardiovascular Medicine, 2022, 9, 763544.	2.4	2
3	The TSP-1 domain of the matricellular protein CCN5 is essential for its nuclear localization and anti-fibrotic function. PLoS ONE, 2022, 17, e0267629.	2.5	5
4	EphA2 Interacts with Tim-4 through Association between Its FN3 Domain and the IgV Domain of Tim-4. Cells, 2021, 10, 1290.	4.1	1
5	Arrhythmia Mechanism and Dynamics in a Humanized Mouse Model of Inherited Cardiomyopathy Caused by Phospholamban R14del Mutation. Circulation, 2021, 144, 441-454.	1.6	10
6	Apoptotic Cells Trigger Calcium Entry in Phagocytes by Inducing the Orai1-STIM1 Association. Cells, 2021, 10, 2702.	4.1	3
7	The matricellular protein CCN5 prevents adverse atrial structural and electrical remodelling. Journal of Cellular and Molecular Medicine, 2020, 24, 11768-11778.	3.6	4
8	Analysis of extracellular vesicle miRNA profiles in heart failure. Journal of Cellular and Molecular Medicine, 2020, 24, 7214-7227.	3.6	16
9	Abstract MP165: Exosome-mediated Encapsulation Alters AAV Antigenicity and Infectivity: Implications for Gene Delivery in the Heart. Circulation Research, 2020, 127, .	4.5	1
10	P.316Adeno-associated virus mediated SUMO1 overexpression improves cardiac disease phenotype in mouse models of Duchenne muscular dystrophy. Neuromuscular Disorders, 2019, 29, S159.	0.6	0
11	MicroRNA-25 upregulation protects spinal cords, yet is bad for the heart: The dark side of noncoding RNAS. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, e87-e88.	0.8	1
12	Role of the PRC2-Six1-miR-25 signaling axis in heart failure. Journal of Molecular and Cellular Cardiology, 2019, 129, 58-68.	1.9	11
13	Role of SIRT1 in Modulating Acetylation of the Sarco-Endoplasmic Reticulum Ca ²⁺ -ATPase in Heart Failure. Circulation Research, 2019, 124, e63-e80.	4.5	84
14	Abstract 170: Exosomal AAV-mediated SERCA2a Gene Transfer Improves Cardiac Function in a Mouse Model of Heart Failure. Circulation Research, 2019, 125, .	4.5	0
15	miR-25 Tough Decoy Enhances Cardiac Function in Heart Failure. Molecular Therapy, 2018, 26, 718-729.	8.2	35
16	Enhancing atrialâ€specific gene expression using a calsequestrin cis―regulatory module 4 with a sarcolipin promoter. Journal of Gene Medicine, 2018, 20, e3060.	2.8	11
17	Conventional Method of Transverse Aortic Constriction in Mice. Methods in Molecular Biology, 2018, 1816, 183-193.	0.9	10
18	miR-146a Suppresses SUMO1 Expression and Induces Cardiac Dysfunction in Maladaptive Hypertrophy. Circulation Research, 2018, 123, 673-685.	4.5	70

#	Article	IF	CITATIONS
19	Abstract 104: AAV-Exosomes: A Novel Platform for Myocardial Gene Delivery for Cardioprotection. Circulation Research, 2018, 123, .	4.5	1
20	Abstract 267: Safety and Efficacy of a Combinatorial CCN5/SERCA2a Gene Delivery Approach for Arrhythmia Suppression in a Chronic Model of Angiotensin II (ANG) Induced Cardiac Hypertrophy and Failure. Circulation Research, 2018, 123, .	4.5	0
21	Generation of Efficient miRNA Inhibitors Using Tough Decoy Constructs. Methods in Molecular Biology, 2017, 1521, 41-53.	0.9	9
22	Tenascin-C in Cardiac Hypertrophy andÂFibrosis. Journal of the American College of Cardiology, 2017, 70, 1616-1617.	2.8	5
23	Empagliflozin Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes. Cardiovascular Drugs and Therapy, 2017, 31, 233-246.	2.6	108
24	Abstract 21353: Ccn5 Gene Therapy Suppresses Arrhythmias by Reversing Fibrosis in Mice With Chronic Angiotensin II Infusion. Circulation, 2017, 136, .	1.6	0
25	Cytokine-Like 1 Regulates Cardiac Fibrosis via Modulation of TGF-β Signaling. PLoS ONE, 2016, 11, e0166480.	2.5	16
26	Matricellular Protein CCN5 Reverses Established Cardiac Fibrosis. Journal of the American College of Cardiology, 2016, 67, 1556-1568.	2.8	97
27	Abstract 22: Identification of the Nature of Cardiac Resident c-kit ⁺ Cells. Circulation Research, 2016, 119, .	4.5	0
28	Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Nature Communications, 2015, 6, 7229.	12.8	102
29	Resident c-kit+ cells in the heart are not cardiac stem cells. Nature Communications, 2015, 6, 8701.	12.8	268
30	Stem Cell Factor Gene Transfer Improves Cardiac Function After Myocardial Infarction in Swine. Circulation: Heart Failure, 2015, 8, 167-174.	3.9	33
31	Abstract 333: AAV9 Serca2a Gene Transfer Reverses Some but Not All Electrophysiological Deficits in a Chronic Model of Congestive Heart Failure. Circulation Research, 2015, 117, .	4.5	0
32	Abstract 222: CCN5 Overexpression Triggers Early Amplification Followed by Regression of Electrical Remodeling in a Pressure Overload Rat Model. Circulation Research, 2015, 117, .	4.5	0
33	Abstract 18340: Alternatively Spliced Tissue Factor Promotes Atherosclerosis by Increasing Foam Cell Formation via LOX-1 and SR-A1 up-regulation. Circulation, 2015, 132, .	1.6	0
34	Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature, 2014, 508, 531-535.	27.8	377
35	Alternatively Spliced Tissue Factor Promotes Plaque Angiogenesis Through the Activation of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Signaling. Circulation, 2014, 130, 1274-1286.	1.6	44
36	The Role of SUMO-1 in Cardiac Oxidative Stress and Hypertrophy. Antioxidants and Redox Signaling, 2014, 21, 1986-2001.	5.4	60

#	Article	IF	CITATIONS
37	Abstract O-2: The Role of Post-translational Modifications in SERCA2a-related Cardiac Dysfunction. Circulation Research, 2014, 115, .	4.5	0
38	Abstract 275: Electrophysiological Consequences of AAV9 mediated SERCA2a Gene Transfer to Normal Rat Myocardium. Circulation Research, 2014, 115, .	4.5	0
39	Abstract 16977: MicroRNA-mediated Regulation of SUMO1 Expression in Heart. Circulation, 2014, 130, .	1.6	0
40	Abstract 16942: Alternatively Spliced Tissue Factor promotes plaque progression, inflammation and angiogenesis in experimental atherosclerosis. Circulation, 2014, 130, .	1.6	1
41	Abstract 16892: Beneficial Effect of miR-25 Decoy Overexpression in a Murine Model of Heart Failure. Circulation, 2014, 130, .	1.6	0
42	Abstract 20347: Does Electrophysiological Toxicity Limit the Therapeutic Window of Serca2a Gene Therapy?. Circulation, 2014, 130, .	1.6	0
43	Therapeutic Cardiacâ€Targeted Delivery of <i>miRâ€I </i> Reverses Pressure Overload–Induced Cardiac Hypertrophy and Attenuates Pathological Remodeling. Journal of the American Heart Association, 2013, 2, e000078.	3.7	228
44	Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2013, 56, 63-71.	1.9	17
45	AAV9.I-1c Delivered via Direct Coronary Infusion in a Porcine Model of Heart Failure Improves Contractility and Mitigates Adverse Remodeling. Circulation: Heart Failure, 2013, 6, 310-317.	3.9	64
46	Potential Role of BNIP3 in Cardiac Remodeling, Myocardial Stiffness, and Endoplasmic Reticulum. Circulation: Heart Failure, 2013, 6, 572-583.	3.9	78
47	JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death and Disease, 2012, 3, e265-e265.	6.3	131
48	Transcription coactivator Eya2 is a critical regulator of physiological hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 52, 718-726.	1.9	18
49	PICOT increases cardiac contractility by inhibiting PKCζ activity. Journal of Molecular and Cellular Cardiology, 2012, 53, 53-63.	1.9	26
50	CXCR4 gene transfer prevents pressure overload induced heart failure. Journal of Molecular and Cellular Cardiology, 2012, 53, 223-232.	1.9	28
51	AAV-Mediated Knock-Down of HRC Exacerbates Transverse Aorta Constriction-Induced Heart Failure. PLoS ONE, 2012, 7, e43282.	2.5	14
52	STIM1 silencing prevents pressureâ€overload induced cardiac hypertrophy in mice. FASEB Journal, 2012, 26, 137.7.	0.5	0
53	Abstract 10: Antifibrotic Effect of CCN5 in a Murine Model of Heart Failure. Circulation Research, 2012, 111, .	4.5	0
54	Abstract 38: A Decoy Peptide Selectively Inhibiting Dephosphorylation of Phospholamban. Circulation Research, 2012, 111, .	4.5	0

#	Article	IF	CITATIONS
55	SUMO1-dependent modulation of SERCA2a in heart failure. Nature, 2011, 477, 601-605.	27.8	332
56	Critical Role for Stromal Interaction Molecule 1 in Cardiac Hypertrophy. Circulation, 2011, 124, 796-805.	1.6	144
57	Refilling intracellular calcium stores. Drug Discovery Today Disease Mechanisms, 2010, 7, e145-e150.	0.8	3
58	The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. Journal of Molecular and Cellular Cardiology, 2010, 49, 294-303.	1.9	114
59	The transcription factor Eya2 prevents pressure overload-induced adverse cardiac remodeling. Journal of Molecular and Cellular Cardiology, 2009, 46, 596-605.	1.9	17
60	PICOT is a critical regulator of cardiac hypertrophy and cardiomyocyte contractility. Journal of Molecular and Cellular Cardiology, 2008, 45, 796-803.	1.9	62
61	PICOT Attenuates Cardiac Hypertrophy by Disrupting Calcineurin–NFAT Signaling. Circulation Research, 2008, 102, 711-719.	4.5	80
62	Targeted gene transfer increases contractility and decreases oxygen cost of contractility in normal rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2356-H2363.	3.2	33
63	Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. Journal of Molecular and Cellular Cardiology, 2007, 42, 852-861.	1.9	120
64	PICOT Inhibits Cardiac Hypertrophy and Enhances Ventricular Function and Cardiomyocyte Contractility. Circulation Research, 2006, 99, 307-314.	4.5	83
65	Increased Ca2+ storage capacity in the sarcoplasmic reticulum by overexpression of HRC (histidine-rich Ca2+ binding protein). Biochemical and Biophysical Research Communications, 2003, 300, 192-196.	2.1	31
66	Efficient Viral Gene Transfer to Rat Hearts In Vivo. Protocol Exchange, 0, , .	0.3	1