
Peter Schieberle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9169791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. European Food Research and Technology, 2008, 228, 265-273.	1.6	519
2	Nature's Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angewandte Chemie - International Edition, 2014, 53, 7124-7143.	7.2	409
3	Characterization of the Key Aroma Compounds in the Beverage Prepared from Darjeeling Black Tea: Quantitative Differences between Tea Leaves and Infusion. Journal of Agricultural and Food Chemistry, 2006, 54, 916-924.	2.4	343
4	Quantitative analysis of aroma compounds in wheat and rye bread crusts using a stable isotope dilution assay. Journal of Agricultural and Food Chemistry, 1987, 35, 252-257.	2.4	248
5	Characterization of the Key Aroma Compounds in Soy Sauce Using Approaches of Molecular Sensory Science. Journal of Agricultural and Food Chemistry, 2007, 55, 6262-6269.	2.4	228
6	Primary odorants in popcorn. Journal of Agricultural and Food Chemistry, 1991, 39, 1141-1144.	2.4	226
7	Potent odorants of the wheat bread crumb Differences to the crust and effect of a longer dough fermentation. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1991, 192, 130-135.	0.7	215
8	Evaluation of Aroma Differences between Hand-Squeezed Juices from Valencia Late and Navel Oranges by Quantitation of Key Odorants and Flavor Reconstitution Experiments. Journal of Agricultural and Food Chemistry, 2001, 49, 2387-2394.	2.4	208
9	Evaluation of the flavour of wheat and rye bread crusts by aroma extract dilution analysis. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1987, 185, 111-113.	0.7	201
10	New Developments in Methods for Analysis of Volatile Flavor Compounds and their Precursors. , 1995, , 403-431.		195
11	Changes in Key Aroma Compounds of Criollo Cocoa Beans During Roasting. Journal of Agricultural and Food Chemistry, 2008, 56, 10244-10251.	2.4	195
12	Evaluation of the Key Odorants in a Thermally Treated Solution of Ribose and Cysteine by Aroma Extract Dilution Techniques. Journal of Agricultural and Food Chemistry, 1995, 43, 2187-2194.	2.4	189
13	Evaluation of Key Odorants in Milk Chocolate and Cocoa Mass by Aroma Extract Dilution Analyses. Journal of Agricultural and Food Chemistry, 1997, 45, 867-872.	2.4	186
14	Quantitative determination of .betadamascenone in foods using a stable isotope dilution assay. Journal of Agricultural and Food Chemistry, 1991, 39, 757-759.	2.4	171
15	Comparison of Key Aroma Compounds in Cooked Brown Rice Varieties Based on Aroma Extract Dilution Analyses. Journal of Agricultural and Food Chemistry, 2002, 50, 1101-1105.	2.4	166
16	Quantitation of 3-Aminopropionamide in PotatoesA Minor but Potent Precursor in Acrylamide Formation. Journal of Agricultural and Food Chemistry, 2004, 52, 4751-4757.	2.4	166
17	Identification of the Key Aroma Compounds in Cocoa Powder Based on Molecular Sensory Correlations. Journal of Agricultural and Food Chemistry, 2006, 54, 5521-5529.	2.4	166
18	Thermally Generated 3-Aminopropionamide as a Transient Intermediate in the Formation of Acrylamide. Journal of Agricultural and Food Chemistry, 2006, 54, 5933-5938.	2.4	160

#	Article	IF	CITATIONS
19	Characterization of the Key Aroma Compounds in an American Bourbon Whisky by Quantitative Measurements, Aroma Recombination, and Omission Studies. Journal of Agricultural and Food Chemistry, 2008, 56, 5820-5826.	2.4	153
20	Identification Based on Quantitative Measurements and Aroma Recombination of the Character Impact Odorants in a Bavarian Pilsner-type Beer. Journal of Agricultural and Food Chemistry, 2005, 53, 7544-7551.	2.4	152
21	Characterization of the Most Odor-Active Volatiles in Fresh, Hand-Squeezed Juice of Grapefruit (CitrusparadisiMacfayden). Journal of Agricultural and Food Chemistry, 1999, 47, 5189-5193.	2.4	150
22	Identification of potent flavor compounds formed in an aqueous lemon oil/citric acid emulsion. Journal of Agricultural and Food Chemistry, 1988, 36, 797-800.	2.4	149
23	Primary odorants of pale lager beer. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1991, 193, 558-565.	0.7	141
24	Characterization of the Key Aroma Compounds in Apricots (Prunus armeniaca) by Application of the Molecular Sensory Science Concept. Journal of Agricultural and Food Chemistry, 2007, 55, 5221-5228.	2.4	137
25	Identification of the most odour-active volatiles in fresh, hand-extracted juice of Valencia late oranges by odour dilution techniques. Flavour and Fragrance Journal, 1998, 13, 49-55.	1.2	135
26	Quantitative Model Studies on the Formation of Aroma-Active Aldehydes and Acids by Strecker-Type Reactions. Journal of Agricultural and Food Chemistry, 2000, 48, 434-440.	2.4	131
27	Flavor of Cereal Products—A Review. Cereal Chemistry, 1997, 74, 91-97.	1.1	129
28	Comparison of the Most Odor-Active Compounds in Fresh and Dried Hop Cones (Humulus lupulusL.) Tj ETQqC Agricultural and Food Chemistry, 2000, 48, 1776-1783.	0 0 rgBT /C 2.4	Overlock 10 Tf 123
29	Quantitation of (R)- and (S)-Linalool in Beer Using Solid Phase Microextraction (SPME) in Combination with a Stable Isotope Dilution Assay (SIDA). Journal of Agricultural and Food Chemistry, 2003, 51, 7100-7105.	2.4	117
30	Characterization of the Key Aroma Compounds in Pink Guava (Psidium guajava L.) by Means of Aroma Re-engineering Experiments and Omission Tests. Journal of Agricultural and Food Chemistry, 2009, 57, 2882-2888.	2.4	115
31	Quantitation of Important Roast-Smelling Odorants in Popcorn by Stable Isotope Dilution Assays and Model Studies on Flavor Formation during Popping. Journal of Agricultural and Food Chemistry, 1995, 43, 2442-2448.	2.4	112
32	The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine in wheat bread crust. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1990, 191, 206-209.	0.7	111
33	Physiological and analytical studies on flavor perception dynamics as induced by the eating and swallowing process. Food Quality and Preference, 2002, 13, 497-504.	2.3	109
34	2-Oxopropanal, Hydroxy-2-propanone, and 1-PyrrolineImportant Intermediates in the Generation of the Roast-Smelling Food Flavor Compounds 2-Acetyl-1-pyrroline and 2-Acetyltetrahydropyridine. Journal of Agricultural and Food Chemistry, 1998, 46, 2270-2277.	2.4	105
35	Compound Identification:  A Journal of Agricultural and Food Chemistry Perspective. Journal of Agricultural and Food Chemistry, 2007, 55, 4625-4629.	2.4	105
36	Reconstitution of the Flavor Signature of Dornfelder Red Wine on the Basis of the Natural Concentrations of Its Key Aroma and Taste Compounds. Journal of Agricultural and Food Chemistry, 2011, 59, 8866-8874.	2.4	105

#	Article	IF	CITATIONS
37	Potent aromatic compounds in the crumb of wheat bread (French-type) ? influence of pre-ferments and studies on the formation of key odorants during dough processing. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1995, 201, 241-248.	0.7	104
38	Formation of Amines and Aldehydes from Parent Amino Acids during Thermal Processing of Cocoa and Model Systems:Â New Insights into Pathways of the Strecker Reaction. Journal of Agricultural and Food Chemistry, 2006, 54, 1730-1739.	2.4	102
39	Identification of Potent Aroma Compounds in Thermally Treated Mixtures of Clucose/Cysteine and Rhamnose/Cysteine Using Aroma Extract Dilution Techniques. Journal of Agricultural and Food Chemistry, 1997, 45, 898-906.	2.4	101
40	Profiling food volatiles by comprehensive two-dimensional ga schromatography coupled with mass spectrometry: Advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different origins. Journal of Chromatography A, 2010, 1217, 5848-5858.	1.8	100
41	Determination of Key Aroma Compounds in the Crumb of a Three-Stage Sourdough Rye Bread by Stable Isotope Dilution Assays and Sensory Studies. Journal of Agricultural and Food Chemistry, 2001, 49, 4304-4311.	2.4	98
	Characterization of the Key Odorants in a High-Grade Chinese Green Tea Beverage (<i>Camellia) Tj ETQq0 0 0 rg</i>	BT /Overlo	ck 10 Tf 50 5
42	in Tea Leaves Caused by the Tea Manufacturing Process. Journal of Agricultural and Food Chemistry, 2020, 68, 5168-5179.	2.4	97
43	Comparison of Key Odorants Generated by Thermal Treatment of Commercial and Self-Prepared Yeast Extracts:Â Influence of the Amino Acid Composition on Odorant Formation. Journal of Agricultural and Food Chemistry, 1997, 45, 1338-1344.	2.4	92
44	Identification of the volatile flavour compounds of wheat bread crust — comparison with rye bread crust. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1985, 180, 474-478.	0.7	91
45	Characterization of the Key Aroma Compounds in Two Bavarian Wheat Beers by Means of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2013, 61, 11303-11311.	2.4	91
46	Comprehensive two-dimensional gas chromatography and food sensory properties: potential and challenges. Analytical and Bioanalytical Chemistry, 2015, 407, 169-191.	1.9	91
47	Potent odorants of rye bread crust-differences from the crumb and from wheat bread crust. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 198, 292-296.	0.7	90
48	A New LC/MS-Method for the Quantitation of Acrylamide Based on a Stable Isotope Dilution Assay and Derivatization with 2-Mercaptobenzoic Acid. Comparison with Two GC/MS Methods. Journal of Agricultural and Food Chemistry, 2003, 51, 7866-7871.	2.4	87
49	Comparison of the most odour-active volatiles in different hop varieties by application of a comparative aroma extract dilution analysis. European Food Research and Technology, 2007, 226, 45-55.	1.6	87
50	Quantitation of Key Peanut Aroma Compounds in Raw Peanuts and Pan-Roasted Peanut Meal. Aroma Reconstitution and Comparison with Commercial Peanut Products. Journal of Agricultural and Food Chemistry, 2010, 58, 11018-11026.	2.4	85
51	Characterization of the Aroma-Active Compounds in Pink Guava (<i>Psidium guajava</i> , L.) by Application of the Aroma Extract Dilution Analysis. Journal of Agricultural and Food Chemistry, 2008, 56, 4120-4127.	2.4	84
52	Sensomics Analysis of Key Hazelnut Odorants (Corylus avellana L. â€~Tonda Gentile') Using Comprehensive Two-Dimensional Gas Chromatography in Combination with Time-of-Flight Mass Spectrometry (GC×GC-TOF-MS). Journal of Agricultural and Food Chemistry, 2013, 61, 5226-5235.	2.4	78
53	Quantitative Studies on the Formation of Key Odorants in Thermally Treated Yeast Extracts Using Stable Isotope Dilution Assays. Journal of Agricultural and Food Chemistry, 1998, 46, 4695-4701.	2.4	77

Evaluation of the most odour-active compounds in the peel oil of clementines (citrus reticulata) Tj ETQq0 0 0 rgBT $\frac{10}{1.6}$ Overlock $\frac{10}{72}$ Tf 50 62

#	Article	IF	CITATIONS
55	Changes in the Key Odorants of Italian Hazelnuts (Coryllus avellana L. Var. Tonda Romana) Induced by Roasting. Journal of Agricultural and Food Chemistry, 2010, 58, 6351-6359.	2.4	69
56	Decoding the Key Aroma Compounds of a Hungarian-Type Salami by Molecular Sensory Science Approaches. Journal of Agricultural and Food Chemistry, 2009, 57, 4319-4327.	2.4	67
57	Characterization of the Key Aroma Compounds in White Alba Truffle (<i>Tuber magnatum pico</i>) and Burgundy Truffle (<i>Tuber uncinatum</i>) by Means of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2017, 65, 9287-9296.	2.4	63
58	Characterization of the Key Odorants in Pan-Fried White Mushrooms (Agaricus bisporus L.) by Means of Molecular Sensory Science: Comparison with the Raw Mushroom Tissue. Journal of Agricultural and Food Chemistry, 2013, 61, 3804-3813.	2.4	62
59	Characterization of the Key Aroma Compounds in Two Commercial Rums by Means of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2016, 64, 637-645.	2.4	60
60	Characterization of (E,E,Z)-2,4,6-Nonatrienal as a Character Impact Aroma Compound of Oat Flakes. Journal of Agricultural and Food Chemistry, 2005, 53, 8699-8705.	2.4	57
61	New Insights into the Formation of Aroma-Active Strecker Aldehydes from 3-Oxazolines as Transient Intermediates. Journal of Agricultural and Food Chemistry, 2012, 60, 6312-6322.	2.4	56
62	Flavor Contribution and Formation of the Intense Roast-Smelling Odorants 2-Propionyl-1-pyrroline and 2-Propionyltetrahydropyridine in Maillard-Type Reactions. Journal of Agricultural and Food Chemistry, 1998, 46, 2721-2726.	2.4	55
63	Evaluation of Key Aroma Compounds in Processed Prawns (Whiteleg Shrimp) by Quantitation and Aroma Recombination Experiments. Journal of Agricultural and Food Chemistry, 2017, 65, 2776-2783.	2.4	54
64	Quantitation of the Intense Aroma Compound 3-Mercapto-2-methylpentan-1-ol in Raw and Processed Onions (Allium cepa) of Different Origins and in OtherAlliumVarieties Using a Stable Isotope Dilution Assay. Journal of Agricultural and Food Chemistry, 2004, 52, 2797-2802.	2.4	53
65	Sensory-Directed Identification of Creaminess-Enhancing Volatiles and Semivolatiles in Full-Fat Cream. Journal of Agricultural and Food Chemistry, 2007, 55, 9634-9645.	2.4	53
66	Analysis of the seasoning-like flavour substances of a commercial lovage extract (Levisticum) Tj ETQq0 0 0 rgBT /	Dverlock 1 1.2	0 Tf 50 302 ⁻
67	Quantitation of <i>S</i> -Methylmethionine in Raw Vegetables and Green Malt by a Stable Isotope Dilution Assay Using LC-MS/MS: Comparison with Dimethyl Sulfide Formation after Heat Treatment. Journal of Agricultural and Food Chemistry, 2009, 57, 9091-9096.	2.4	51
68	Characterisation of the most odour-active compounds in a peel oil extract from Pontianak oranges (Citrus nobilis var. Lour. microcarpa Hassk.). European Food Research and Technology, 2008, 227, 735-744.	1.6	50
69	Influence of the Production Process on the Key Aroma Compounds of Rum: From Molasses to the Spirit. Journal of Agricultural and Food Chemistry, 2016, 64, 9041-9053.	2.4	49
70	Quantification of 3-aminopropionamide in cocoa, coffee and cereal products. European Food Research and Technology, 2007, 225, 857-863.	1.6	48
71	Characterization of the Key Odorants in Raw Italian Hazelnuts (Corylus avellana L. var. Tonda) Tj ETQq1 1 0.7843 and Food Chemistry, 2012, 60, 5057-5064.	14 rgBT /C 2.4	Overlock 10 T 48
72	Characterization of the Key Odorants in High-Quality Extra Virgin Olive Oils and Certified Off-Flavor Oils to Elucidate Aroma Compounds Causing a Rancid Off-Flavor. Journal of Agricultural and Food Chemistry, 2020, 68, 5927-5937.	2.4	48

#	Article	IF	CITATIONS
73	Formation of Furaneol in Heat-Processed Foods. ACS Symposium Series, 1992, , 164-174.	0.5	47
74	Characterization of the Key Aroma Compounds in Beef and Pork Vegetable Gravies a̕la Chef by Application of the Aroma Extract Dilution Analysis. Journal of Agricultural and Food Chemistry, 2009, 57, 9114-9122.	2.4	47
75	Performance evaluation of non-targeted peak-based cross-sample analysis for comprehensive two-dimensional gas chromatography–mass spectrometry data and application to processed hazelnut profiling. Journal of Chromatography A, 2012, 1243, 81-90.	1.8	47
76	Decoding the Combinatorial Aroma Code of a Commercial Cognac by Application of the Sensomics Concept and First Insights into Differences from a German Brandy. Journal of Agricultural and Food Chemistry, 2015, 63, 1948-1956.	2.4	47
77	Changes in the Key Odorants and Aroma Profiles of Hamlin and Valencia Orange Juices Not from Concentrate (NFC) during Chilled Storage. Journal of Agricultural and Food Chemistry, 2018, 66, 7428-7440.	2.4	47
78	Changes in the Key Aroma Compounds of Raw Shiitake Mushrooms (<i>Lentinula edodes</i>) Induced by Pan-Frying As Well As by Rehydration of Dry Mushrooms. Journal of Agricultural and Food Chemistry, 2020, 68, 4493-4506.	2.4	47
79	Characterization of Odorants Causing an Atypical Aroma in White Pepper Powder (Piper nigrumL.) Based on Quantitative Measurements and Orthonasal Breakthrough Thresholds. Journal of Agricultural and Food Chemistry, 2005, 53, 6049-6055.	2.4	46
80	Characterization of the Key Odorants in Commercial Cold-Pressed Oils from Unpeeled and Peeled Rapeseeds by the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2016, 64, 627-636.	2.4	46
81	Studies on the Formation and Stability of the Roast-Flavor Compound 2-Acetyl-2-thiazoline. Journal of Agricultural and Food Chemistry, 1995, 43, 2946-2950.	2.4	45
82	Comparison of the Key Aroma Compounds in Organically Grown, Raw West-African Peanuts (Arachis) Tj ETQqO Chemistry, 2008, 56, 10237-10243.	0 0 rgBT /(2.4	Overlock 10 Tf 45
83	Characterization of the Key Aroma Compounds in Raw Licorice (<i>Glycyrrhiza glabra</i> L.) by Means of Molecular Sensory Science. Journal of Agricultural and Food Chemistry, 2016, 64, 8388-8396.	2.4	44
84	OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol. Chemical Senses, 2017, 42, 195-210.	1.1	44
85	Food sources and biomolecular targets of tyramine. Nutrition Reviews, 2019, 77, 107-115.	2.6	42
86	Influence of different storage conditions on changes in the key aroma compounds of orange juice reconstituted from concentrate. European Food Research and Technology, 2011, 232, 129-142.	1.6	41
87	Characterization of Key Aroma Compounds in a Commercial Rum and an Australian Red Wine by Means of a New Sensomics-Based Expert System (SEBES)—An Approach To Use Artificial Intelligence in Determining Food Odor Codes. Journal of Agricultural and Food Chemistry, 2019, 67, 4011-4022.	2.4	41
88	Identification of Novel Aroma-Active Thiols in Pan-Roasted White Sesame Seeds. Journal of Agricultural and Food Chemistry, 2010, 58, 7368-7375.	2.4	39
89	New and Convenient Syntheses of the Important Roasty, Popcorn-like Smelling Food Aroma Compounds 2-Acetyl-1-pyrroline and 2-Acetyltetrahydropyridine from Their Corresponding Cyclic α-Amino Acids. Journal of Agricultural and Food Chemistry, 1998, 46, 616-619.	2.4	37
90	Key aroma compounds in fermented Forastero cocoa beans and changes induced by roasting. European Food Research and Technology, 2019, 245, 1907-1915.	1.6	37

#	Article	IF	CITATIONS
91	Structure–Odor Activity Studies on Monoterpenoid Mercaptans Synthesized by Changing the Structural Motifs of the Key Food Odorant 1- <i>p</i> -Menthene-8-thiol. Journal of Agricultural and Food Chemistry, 2016, 64, 3849-3861.	2.4	36
92	Characterisation of the key aroma compounds in a Longjing green tea infusion (Camellia sinensis) by the sensomics approach and their quantitative changes during processing of the tea leaves. European Food Research and Technology, 2020, 246, 2411-2425.	1.6	36
93	Evaluation of the Key Aroma Compounds in Beef and Pork Vegetable Gravies a la Chef by Stable Isotope Dilution Assays and Aroma Recombination Experiments. Journal of Agricultural and Food Chemistry, 2011, 59, 13122-13130.	2.4	35
94	Characterization of Aroma-Active Compounds in Italian Tomatoes with Emphasis on New Odorants. Journal of Agricultural and Food Chemistry, 2017, 65, 5198-5208.	2.4	34
95	New Aspects on the Formation and Analysis of Acrylamide. , 2005, 561, 205-222.		32
96	Structure–Odor Correlations in Homologous Series of Alkanethiols and Attempts To Predict Odor Thresholds by 3D-QSAR Studies. Journal of Agricultural and Food Chemistry, 2015, 63, 1419-1432.	2.4	32
97	Potent odorants resulting from the peroxidation of lemon oil. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1989, 189, 26-31.	0.7	30
98	Quantitation and Enantiomeric Ratios of Aroma Compounds Formed by an Ehrlich Degradation ofl-Isoleucine in Fermented Foods. Journal of Agricultural and Food Chemistry, 2016, 64, 646-652.	2.4	30
99	Structure–Odor Correlations in Homologous Series of Mercaptoalkanols. Journal of Agricultural and Food Chemistry, 2017, 65, 4329-4340.	2.4	28
100	Screening for Novel Mercaptans in 26 Fruits and 20 Wines Using a Thiol-Selective Isolation Procedure in Combination with Three Detection Methods. Journal of Agricultural and Food Chemistry, 2019, 67, 4553-4559.	2.4	28
101	Role of the Fermentation Process in Off-odorant Formation in White Pepper:Â On-site Trial in Thailand. Journal of Agricultural and Food Chemistry, 2005, 53, 6056-6060.	2.4	25
102	Influence of the polyethylene packaging on the adsorption of odour-active compounds from UHT-milk. European Food Research and Technology, 2007, 225, 215-223.	1.6	24
103	Current Status and Future Perspectives in Flavor Research: Highlights of the 11th Wartburg Symposium on Flavor Chemistry & Biology. Journal of Agricultural and Food Chemistry, 2018, 66, 2197-2203.	2.4	24
104	Identification of the Key Aroma Compounds in Gluten-Free Rice Bread. Journal of Agricultural and Food Chemistry, 2019, 67, 2963-2972.	2.4	23
105	Characterization of the Key Aroma Compounds in a Commercial Amontillado Sherry Wine by Means of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2015, 63, 4761-4770.	2.4	22
106	Characterization of the Key Aroma Compounds in the Crust of Soft Pretzels by Application of the Sensomics Concept. Journal of Agricultural and Food Chemistry, 2019, 67, 7110-7119.	2.4	22
107	Influence of water on the generation of Strecker aldehydes from dry processed foods. European Food Research and Technology, 2010, 230, 375-381.	1.6	21
108	Quantitation of Nine Lactones in Dairy Cream by Stable Isotope Dilution Assays Based on Novel Syntheses of Carbon-13-Labeled Î ³ -Lactones and Deuterium-Labeled δ-Lactones in Combination with Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 10534-10541.	2.4	21

#	Article	IF	CITATIONS
109	Comparison of the Key Aroma Compounds in Fresh, Raw Ginger (<i>Zingiber officinale</i> Roscoe) from China and Roasted Ginger by Application of Aroma Extract Dilution Analysis. Journal of Agricultural and Food Chemistry, 2020, 68, 15292-15300.	2.4	21
110	Characterisation of the key aroma compounds in the peel oil of Pontianak oranges (Citrus nobilis) Tj ETQqO O Technology, 2009, 229, 319-328.	0 rgBT /Ove 1.6	rlock 10 Tf 50 20
111	Assessment of the Aroma Impact of Major Odor-Active Thiols in Pan-Roasted White Sesame Seeds by Calculation of Odor Activity Values. Journal of Agricultural and Food Chemistry, 2011, 59, 10211-10218.	2.4	20
112	Characterization of Key Aroma Compounds in Raw and Thermally Processed Prawns and Thermally Processed Lobsters by Application of Aroma Extract Dilution Analysis. Journal of Agricultural and Food Chemistry, 2016, 64, 6433-6442.	2.4	20
113	Die molekulare Welt des Lebensmittelgenusses: Auf den Geschmack gekommen. Chemie in Unserer Zeit, 2003, 37, 388-401.	0.1	19
114	Changes in odour-active compounds of two varieties of Colombian guava (Psidium guajava L.) during ripening. European Food Research and Technology, 2010, 230, 859-864.	1.6	19
115	Differentiation of Rums Produced from Sugar Cane Juice (Rhum Agricole) from Rums Manufactured from Sugar Cane Molasses by a Metabolomics Approach. Journal of Agricultural and Food Chemistry, 2018, 66, 3038-3045.	2.4	19
116	Comparison of the key aroma compounds in hand-squeezed and unpasteurised, commercial NFC juices prepared from Brazilian Pera Rio oranges. European Food Research and Technology, 2011, 232, 995-1005.	1.6	17
117	Structure–Odor Correlations in Homologous Series of Mercapto Furans and Mercapto Thiophenes Synthesized by Changing the Structural Motifs of the Key Coffee Odorant Furan-2-ylmethanethiol. Journal of Agricultural and Food Chemistry, 2018, 66, 4189-4199.	2.4	17
118	Characterization of the Key Aroma Compounds in Heat-Processed Licorice (Succus Liquiritiae) by Means of Molecular Sensory Science. Journal of Agricultural and Food Chemistry, 2017, 65, 132-138.	2.4	16
119	Characterization of the Key Aroma Compounds in a Commercial Milk Chocolate by Application of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2020, 68, 12086-12095.	2.4	15
120	Characterization of the Key Aroma Compounds in Fresh Leaves of Garden Sage (<i>Salvia) Tj ETQq0 0 0 rgBT Comparison with Commercial Dried Sage. Journal of Agricultural and Food Chemistry, 2021, 69, 5113-5124.</i>	Overlock 10 2.4	0 Tf 50 312 Td 15
121	Formation of 2-Acetyl-l-pyrroline and Other Important Flavor Compounds in Wheat Bread Crust. ACS Symposium Series, 1989, , 268-275.	0.5	14
122	Key aroma volatile compounds of gulupa (Passiflora edulis Sims fo edulis) fruit. European Food Research and Technology, 2013, 236, 1085-1091.	1.6	14
123	Development of stable isotope dilution assays for the quantitation of the food odorants hydrogen sulphide, methanethiol, ethanethiol, and propane-1-thiol and application to durian (Durio zibethinus) Tj ETQq	1 1 0. 7 &431	4 rgBT /Overlo
124	New Degradation Pathways of the Key Aroma Compound 1-Penten-3-one during Storage of Not-from-Concentrate Orange Juice. Journal of Agricultural and Food Chemistry, 2018, 66, 11083-11091.	2.4	14
125	Characterization of the Key Aroma Compounds in Yeast Dumplings by Means of the Sensomics Concept. Journal of Agricultural and Food Chemistry, 2019, 67, 2973-2979.	2.4	13
126	Changes in the key aroma compounds of matsutake mushroom (Tricholoma matsutake Sing.) from Canada during pan-frying elucidated by application of the sensomics approach. European Food Research and Technology, 2021, 247, 51-65.	1.6	13

#	Article	IF	CITATIONS
127	Characterization of the Key Aroma Compounds in a Freshly Prepared Oat (<i>Avena sativa</i> L.) Pastry by Application of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2021, 69, 1578-1588.	2.4	12
128	Quantitation of Key Aroma Compounds in Fresh, Raw Ginger (<i>Zingiber officinale</i> Roscoe) from China and Roasted Ginger by Stable Isotope Dilution Assays and Aroma Profiling by Recombination Experiments. Journal of Agricultural and Food Chemistry, 2020, 68, 15284-15291.	2.4	11
129	Characterization of the Key Odorants Causing the Musty and Fusty/Muddy Sediment Off-Flavors in Olive Oils. Journal of Agricultural and Food Chemistry, 2021, 69, 14878-14892.	2.4	11
130	Determination of Aroma Compound Partition Coefficients in Aqueous, Polysaccharide, and Dairy Matrices Using the Phase Ratio Variation Method: A Review and Modeling Approach. Journal of Agricultural and Food Chemistry, 2016, 64, 4450-4470.	2.4	10
131	Quantitative Analyses of Key Odorants and Their Precursors Reveal Differences in the Aroma of Gluten-Free Rice Bread and Wheat Bread. Journal of Agricultural and Food Chemistry, 2019, 67, 11179-11186.	2.4	10
132	Bread Flavor. ACS Symposium Series, 1989, , 258-267.	0.5	9
133	Flavor Contribution and Formation of Heterocyclic Oxygen-Containing Key Aroma Compounds in Thermally Processed Foods. ACS Symposium Series, 2002, , 207-226.	0.5	9
134	Tin oxide sensor element for the detection of organic compounds with hydroxy groups. Physical Chemistry Chemical Physics, 2003, 5, 5203-5206.	1.3	9
135	Quantitation of benzene in flavourings and liquid foods containing added cherry-type flavour by a careful work-up procedure followed by a stable isotope dilution assay. European Food Research and Technology, 2019, 245, 1605-1610.	1.6	8
136	Structure/Odor Activity Studies on Aromatic Mercaptans and Their Cyclohexane Analogues Synthesized by Changing the Structural Motifs of Naturally Occurring Phenyl Alkanethiols. Journal of Agricultural and Food Chemistry, 2019, 67, 2598-2606.	2.4	8
137	Changes in the Concentrations of Key Aroma Compounds in Oat (<i>Avena sativa</i>) Flour during Manufacturing of Oat Pastry. Journal of Agricultural and Food Chemistry, 2021, 69, 1589-1597.	2.4	7
138	Characterization of the Key Aroma Compounds in a Commercial Fino and a Commercial Pedro Ximénez Sherry Wine by Application of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2021, 69, 5125-5133.	2.4	7
139	The sensomics approach: A useful tool to unravel the genuine aroma blueprint of foods and aroma changes during food processing. Comprehensive Analytical Chemistry, 2022, , 41-68.	0.7	7
140	Guidelines for unequivocal structural identification of compounds with biological activity of significance in food chemistry (IUPAC Technical Report). Pure and Applied Chemistry, 2019, 91, 1417-1437.	0.9	5
141	Effect of texture modification by ascorbic acid and monoglycerides on the release of aroma compounds from fresh and aged wheat dumplings. European Food Research and Technology, 2020, 246, 1-11.	1.6	5
142	New results on the formation of important maillard aroma compounds. Special Publication - Royal Society of Chemistry, 2007, , 163-177.	0.0	5
143	Labelling studies on pathways of amino acid related odorant generation by Saccharomyces cerevisiae in wheat bread dough. Developments in Food Science, 2006, 43, 89-92.	0.0	4
144	Correlation between the Concentrations of Two Oak Derived Key Odorants and the Intensity of a Woody-"Barrique-Type―Odor Note in Different Red Wines. ACS Symposium Series, 2011, , 165-173.	0.5	3

#	Article	IF	CITATIONS
145	Identification and Quantitation of Four New 2-Alkylthiazolidine-4-carboxylic Acids Formed in Orange Juice by a Reaction of Saturated Aldehydes with Cysteine. Journal of Agricultural and Food Chemistry, 2018, 66, 11073-11082.	2.4	3
146	Model studies on benzene formation from benzaldehyde. European Food Research and Technology, 2020, 246, 901-908.	1.6	3
147	Influence of High Hydrostatic Pressure on Aroma Compound Formation in Thermally Processed Proline—Clucose Mixtures. ACS Symposium Series, 2005, , 136-145.	0.5	2
148	Comparative Studies on the Generation of Acrolein as Well as of Aroma-Active Compounds during Deep-Frying with Different Edible Vegetable Fats and Oils. ACS Symposium Series, 2012, , 129-136.	0.5	2
149	Model Study on Changes in Key Aroma Compounds of Dornfelder Red Wine Induced by Treatment with Toasted French Oak Chips (<i>Q. robur</i>). ACS Symposium Series, 2015, , 123-130.	0.5	0