Aaron M Ellison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9169031/publications.pdf

Version: 2024-02-01

240 papers

18,694 citations

18482 62 h-index 126 g-index

282 all docs 282 docs citations

times ranked

282

20185 citing authors

#	Article	IF	CITATIONS
1	Phenological displacement is uncommon among sympatric angiosperms. New Phytologist, 2022, 233, 1466-1478.	7.3	13
2	Land-use history impacts spatial patterns and composition of woody plant species across a 35-hectare temperate forest plot. PeerJ, 2022, 10, e12693.	2.0	4
3	Art's Work in the Age of Biotechnology: Shaping Our Genetic Futures. Leonardo, 2022, 55, 5-17.	0.3	O
4	An open future for <scp>MEE</scp> . Methods in Ecology and Evolution, 2022, 13, 1372-1373.	5. 2	0
5	Ecological and Cultural Understanding as a Basis for Management of a Globally Significant Island Landscape. Coasts, 2022, 2, 152-202.	0.9	3
6	New directions in tropical phenology. Trends in Ecology and Evolution, 2022, 37, 683-693.	8.7	16
7	Clockwise and counterclockwise hysteresis characterize state changes in the same aquatic ecosystem. Ecology Letters, 2021, 24, 94-101.	6.4	6
8	A Camera and a Click to Democratize Knowledge. Bulletin of the Ecological Society of America, 2021, 102, e01805.	0.2	0
9	Foundation species across a latitudinal gradient in China. Ecology, 2021, 102, e03234.	3.2	10
10	In silico trio biomarkers for bacterial vaginosis revealed by species dominance network analysis. Computational and Structural Biotechnology Journal, 2021, 19, 2979-2989.	4.1	7
11	An unusually high shrubline on the Tibetan Plateau. Ecology, 2021, 102, e03310.	3. 2	17
12	Designing (for) Urban Food Webs. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
13	Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts. Nature Ecology and Evolution, 2021, 5, 589-591.	7.8	32
14	Broadening the ecological mindset. Ecological Applications, 2021, 31, e02347.	3.8	4
15	Regulation by the Pitcher Plant Sarracenia purpurea of the Structure of its Inquiline Food Web. American Midland Naturalist, 2021, 186, .	0.4	3
16	Hemlock Hospice. , 2021, , 488-502.		0
17	Toward a unified diversity–area relationship (DAR) of species and gene diversity illustrated with the human gut metagenome. Ecosphere, 2021, 12, e03807.	2.2	0
18	Foraging modes of carnivorous plants. Israel Journal of Ecology and Evolution, 2020, 66, 101-112.	0.6	5

#	Article	IF	CITATIONS
19	A spatial concordance correlation coefficient with an application to image analysis. Spatial Statistics, 2020, 40, 100405.	1.9	4
20	Ten years of <i>Methods in Ecology and Evolution</i> Nethods in Ecology and Evolution, 2020, 11, 4-5.	5.2	1
21	The End-to-End Provenance Project. Patterns, 2020, 1, 100016.	5.9	6
22	A New Method for Counting Reproductive Structures in Digitized Herbarium Specimens Using Mask R-CNN. Frontiers in Plant Science, 2020, 11, 1129.	3.6	28
23	Carbon budget of the Harvard Forest Longâ€Term Ecological Research site: pattern, process, and response to global change. Ecological Monographs, 2020, 90, e01423.	5.4	67
24	Mangrove Rehabilitation and Restoration as Experimental Adaptive Management. Frontiers in Marine Science, 2020, 7, .	2.5	98
25	Lessons and recommendations from three decades as an NSF REU site: A call for systemsâ€based assessment. Ecology and Evolution, 2020, 10, 2710-2738.	1.9	10
26	Social media are fuelling the Amazon's destruction. Nature, 2020, 580, 321-321.	27.8	2
27	Trade-Offs in Cold Resistance at the Northern Range Edge of the Common Woodland Ant <i>Aphaenogaster picea</i> /i>(Formicidae). American Naturalist, 2019, 194, E151-E163.	2.1	16
28	How do climate change experiments alter plotâ€scale climate?. Ecology Letters, 2019, 22, 748-763.	6.4	39
29	First <i>In Situ</i> Identification of Ultradian and Infradian Rhythms, and Nocturnal Locomotion Activities of Four Colonies of Red Wood Ants (<i>Formica rufa</i> -Group). Journal of Biological Rhythms, 2019, 34, 19-38.	2.6	4
30	<i>Hierarchy: Perspectives for Ecological Complexity. <i>Second Edition</i></i> . By T. F. H. Allen and Thomas B. Starr. Chicago (Illinois): University of Chicago Press. \$125.00 (hardcover); \$47.50 (paper). vi + 417 p.; ill.; author and subject indexes. ISBN: 978-0-226-48954-4 (hc); 978-0-226-48968-1 (pb); 978-0-226-48971-1 (eb). 2017 Quarterly Review of Biology, 2019, 94, 224-225.	0.1	0
31	Species Diversity Associated with Foundation Species in Temperate and Tropical Forests. Forests, 2019, 10, 128.	2.1	21
32	First Identification of Periodic Degassing Rhythms in Three Mineral Springs of the East Eifel Volcanic Field (EEVF, Germany). Geosciences (Switzerland), 2019, 9, 189.	2.2	6
33	Frost controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau. International Journal of Biometeorology, 2019, 63, 963-972.	3.0	25
34	Foundation Species, Non-trophic Interactions, and the Value of Being Common. IScience, 2019, 13, 254-268.	4.1	144
35	Dominance network analysis provides a new framework for studying the diversity–stability relationship. Ecological Monographs, 2019, 89, e01358.	5.4	30
36	Establish an environmentally sustainable Giant Panda National Park in the Qinling Mountains. Science of the Total Environment, 2019, 668, 979-987.	8.0	21

#	Article	IF	Citations
37	Do Terrestrial Salamanders Indicate Ecosystem Changes in New England Forests?. Forests, 2019, 10, 154.	2.1	5
38	Fire facilitates warming-induced upward shifts of alpine treelines by altering interspecific interactions. Trees - Structure and Function, 2019, 33, 1051-1061.	1.9	15
39	Loss of foundation species revisited: conceptual framework with lessons learned from eastern hemlock and whitebark pine. Ecosphere, 2019, 10, e02917.	2.2	12
40	Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170394.	4.0	75
41	Draft <i>Aphaenogaster</i> genomes expand our view of ant genome size variation across climate gradients. PeerJ, 2019, 7, e6447.	2.0	1
42	A Sense of Scale. Bulletin of the Ecological Society of America, 2018, 99, 173-179.	0.2	0
43	Genotypic variability enhances the reproducibility of an ecological study. Nature Ecology and Evolution, 2018, 2, 279-287.	7.8	41
44	Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. Annals of Botany, 2018, 121, 617-624.	2.9	83
45	Establish a special conservation zone for the captive giant panda. Ecosystem Health and Sustainability, 2018, 4, 29-33.	3.1	2
46	Identifying foundation species in North American forests using longâ€ŧerm data on ant assemblage structure. Ecosphere, 2018, 9, e02139.	2.2	15
47	Mating system does not predict niche breath. Global Ecology and Biogeography, 2018, 27, 804-813.	5.8	15
48	Widespread sampling biases in herbaria revealed from largeâ€scale digitization. New Phytologist, 2018, 217, 939-955.	7.3	271
49	A unified concept of dominance applicable at both community and species scales. Ecosphere, 2018, 9, e02477.	2.2	20
50	Art/Science Collaborations: New Explorations of Ecological Systems, Values, and their Feedbacks. Bulletin of the Ecological Society of America, 2018, 99, 180-191.	0.2	7
51	Sensitivity of Codispersion to Noise and Error in Ecological and Environmental Data. Forests, 2018, 9, 679.	2.1	4
52	The Past, Present, and Future of the Hemlock Woolly Adelgid (Adelges tsugae) and Its Ecological Interactions with Eastern Hemlock (Tsuga canadensis) Forests. Insects, 2018, 9, 172.	2.2	33
53	Ecology of rotifers and their unappreciated source of nitrogen and phosphorus in temperate northeastern American bogs. Fundamental and Applied Limnology, 2018, 191, 277-287.	0.7	7
54	Degassing Rhythms and Fluctuations of Geogenic Gases in A Red Wood-Ant Nest and in Soil in The Neuwied Basin (East Eifel Volcanic Field, Germany). Insects, 2018, 9, 135.	2.2	8

#	Article	IF	CITATIONS
55	Can a Red Wood-Ant Nest Be Associated with Fault-Related CH4 Micro-Seepage? A Case Study from Continuous Short-Term In-Situ Sampling. Animals, 2018, 8, 46.	2.3	8
56	Interaction between pollution and climate change augments ecological risk to a coastal ecosystem. Ecosystem Health and Sustainability, 2018, 4, 161-168.	3.1	7
57	Environmental toxicants impair liver and kidney function and sperm quality of captive pandas. Ecotoxicology and Environmental Safety, 2018, 162, 218-224.	6.0	12
58	Sharing and Preserving Computational Analyses for Posterity with encapsulator. Computing in Science and Engineering, 2018, 20, 111-124.	1.2	8
59	Regime shifts and hysteresis in the pitcher-plant microecosystem. Ecological Modelling, 2018, 382, 1-8.	2.5	9
60	Habitat Suitability and Distribution Models: With Applications in R. Ecology, Biodiversity and Conservation. By Antoine Guisan, Wilfried Thuiller, and Niklaus E. Zimmermann; with contributions from Valeria Di Cola, Damien Georges, and Achilleas Psomas. Cambridge and New York: Cambridge University Press. \$115.00 (hardcover); \$49.99 (paper). xvii + 462 p. + 32 pl.; ill.; index. ISBN: 978-0-521-76513-8 (hc); 978-0-521-75836-9 (pb). 2017 Quarterly Review of Biology, 2018, 93, 269-269.	0.1	1
61	Estimating the exposure of carnivorous plants to rapid climatic change. , 2018, , .		1
62	The future of research with carnivorous plants. , 2018, , .		5
63	Introduction: what is a carnivorous plant?. , 2018, , .		1
64	Atmospheric deposition exposes $\scp>Q$ inling pandas to toxic pollutants. Ecological Applications, 2017, 27, 343-348.	3.8	10
65	PBDEs (polybrominated diphenyl ethers) pose a risk to captive giant pandas. Environmental Pollution, 2017, 226, 174-181.	7.5	10
66	All species are important, but some species are more important than others. Journal of Vegetation Science, 2017, 28, 669-671.	2.2	15
67	Heat tolerance predicts the importance of species interaction effects as the climate changes. Integrative and Comparative Biology, 2017, 57, 112-120.	2.0	35
68	Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 2017, 62, 804-812.	9.0	110
69	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	3.2	37
70	If these data could talk. Scientific Data, 2017, 4, 170114.	5.3	27
71	Ecological network metrics: opportunities for synthesis. Ecosphere, 2017, 8, e01900.	2.2	70
72	Environmental proteomics reveals taxonomic and functional changes in an enriched aquatic ecosystem. Ecosphere, 2017, 8, e01954.	2.2	12

#	Article	IF	Citations
73	When a foundation crumbles: forecasting forest dynamics following the decline of the foundation species <i>Tsuga canadensis</i> . Ecosphere, 2017, 8, e01893.	2.2	23
74	Nests of red wood ants (<i>Formica rufa</i> -group) are positively associated with tectonic faults: a double-blind test. PeerJ, 2017, 5, e3903.	2.0	9
75	Foundation Species Loss and Biodiversity of the Herbaceous Layer in New England Forests. Forests, 2016, 7, 9.	2.1	16
76	lt's time to get real about conservation. Nature, 2016, 538, 141-141.	27.8	15
77	Ecosystem warming increases sap flow rates of northern red oak trees. Ecosphere, 2016, 7, e01221.	2.2	16
78	Using codispersion analysis to quantify and understand spatial patterns in species–environment relationships. New Phytologist, 2016, 211, 735-749.	7.3	15
79	Detection probabilities for sessile organisms. Ecosphere, 2016, 7, e01546.	2.2	15
80	Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4380-4385.	7.1	221
81	Using codispersion analysis to characterize spatial patterns in species coâ€occurrences. Ecology, 2016, 97, 32-39.	3.2	17
82	Captive pandas are at risk from environmental toxins. Frontiers in Ecology and the Environment, 2016, 14, 363-367.	4.0	23
83	Assessing the impacts of the decline of <i>Tsuga canadensis</i> stands on two amphibian species in a New England forest. Ecosphere, 2016, 7, e01574.	2.2	12
84	Insights into Student Gains from Undergraduate Research Using Pre- and Post-Assessments. BioScience, 2016, 66, 1070-1078.	4.9	16
85	Climatic warming destabilizes forest ant communities. Science Advances, 2016, 2, e1600842.	10.3	53
86	Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology, 2016, 97, 1668-1679.	3.2	93
87	Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species. BMC Genomics, 2016, 17, 171.	2.8	19
88	A Balanced Data Archiving Policy for Long-Term Studies. Trends in Ecology and Evolution, 2016, 31, 84-85.	8.7	17
89	Liberating field science samples and data. Science, 2016, 351, 1024-1026.	12.6	62
90	Convergence in Multispecies Interactions. Trends in Ecology and Evolution, 2016, 31, 269-280.	8.7	39

#	Article	IF	CITATIONS
91	How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecological Indicators, 2016, 60, 223-230.	6.3	382
92	Changes in canopy structure and ant assemblages affect soil ecosystem variables as a foundation species declines. Ecosphere, 2015, 6, 1-20.	2.2	29
93	Predicted impacts of climatic change on ant functional diversity and distributions in eastern <scp>N</scp> orth <scp>A</scp> merican forests. Diversity and Distributions, 2015, 21, 781-791.	4.1	38
94	Antâ€mediated ecosystem functions on a warmer planet: effects on soil movement, decomposition and nutrient cycling. Journal of Animal Ecology, 2015, 84, 1233-1241.	2.8	40
95	Facilitation stabilizes moisture-controlled alpine juniper shrublines in the central Tibetan Plateau. Global and Planetary Change, 2015, 132, 20-30.	3.5	22
96	Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms. American Journal of Botany, 2015, 102, 1599-1609.	1.7	199
97	Calibrating abundance indices with population size estimators of red back salamanders (<i>Plethodon) Tj ETQq1</i>	1 0.78431 2.0	.4 rgBT /Ove
98	Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns. PLoS ONE, 2014, 9, e92097.	2.5	286
99	Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages. PLoS ONE, 2014, 9, e88029.	2.5	24
100	Experiments Are Revealing a Foundation Species: A Case Study of Eastern Hemlock (<i>Tsuga) Tj ETQq0 0 0 rgBT</i>	/Overlock	10 Tf 50 38
101	Political borders should not hamper wildlife. Nature, 2014, 508, 9-9.	27.8	12
102	Pitcher Plants (<l>Sarracenia</l>) Provide a 21 st -Century Perspective on Infraspecific Ranks and Interspecific Hybrids: A Modest Proposal* for Appropriate Recognition and Usage. Systematic Botany, 2014, 39, 939-949.	0.5	18
103	Building a foundation: Land-use history and dendrochronology reveal temporal dynamics of a <i>Tsuga canadensis</i> /i>(Pinaceae) forest. Rhodora, 2014, 116, 377-427.	0.1	17
104	Targeted Sampling Increases Knowledge and Improves Estimates of Ant Species Richness in Rhode Island. Northeastern Naturalist, 2014, 21, NENHC-13-NENHC-24.	0.3	0
105	Kernel Intensity Estimation of 2-Dimensional Spatial Poisson Point Processes From k-Tree Sampling. Journal of Agricultural, Biological, and Environmental Statistics, 2014, 19, 357-372.	1.4	2
106	Quantifying the impact of an extreme climate event on species diversity in fragmented temperate forests: the effect of the <scp>O</scp> ctober 1987 storm on <scp>B</scp> ritish broadleaved woodlands. Journal of Ecology, 2014, 102, 1273-1287.	4.0	28
107	Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 2014, 84, 45-67.	5.4	2,397
108	Preserving the Picturesque: Perceptions of Landscape, Landscape Art, and Land Protection in the United States and China. Land, 2014, 3, 260-281.	2.9	5

#	Article	IF	Citations
109	MaxEnt versus MaxLike: empirical comparisons with ant species distributions. Ecosphere, 2013, 4, 1-15.	2.2	125
110	Predicting foodâ€web structure with metacommunity models. Oikos, 2013, 122, 492-506.	2.7	37
111	Should species distribution models account for spatial autocorrelation? A test of model projections across eight millennia of climate change. Global Ecology and Biogeography, 2013, 22, 760-771.	5.8	67
112	The Suffocating Embrace of Landscape and the Picturesque Conditioning of Ecology. Landscape Journal, 2013, 32, 79-94.	0.3	17
113	Next-Generation Field Guides. BioScience, 2013, 63, 891-899.	4.9	55
114	Modeling foundation species in food webs. Ecosphere, 2013, 4, 1-14.	2.2	31
115	Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7742-7747.	7.1	61
116	Using Physiology to Predict the Responses of Ants to Climatic Warming. Integrative and Comparative Biology, 2013, 53, 965-974.	2.0	35
117	Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest. PeerJ, 2013, 1, e41.	2.0	60
118	A physiological traitâ€based approach to predicting the responses of species to experimental climate warming. Ecology, 2012, 93, 2305-2312.	3.2	113
119	Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecology and Evolution, 2012, 2, 3009-3015.	1.9	35
120	The Ants of Nantucket: Unexpectedly High Biodiversity in an Anthropogenic Landscape. Northeastern Naturalist, 2012, 19, 43-66.	0.3	11
121	The relative contributions of seed bank, seed rain, and understory vegetation dynamics to the reorganization of <i>Tsuga canadensis</i> forests after loss due to logging or simulated attack by <i>Adelges tsugae</i> . Canadian Journal of Forest Research, 2012, 42, 2090-2105.	1.7	18
122	Environmental proteomics, biodiversity statistics and food-web structure. Trends in Ecology and Evolution, 2012, 27, 436-442.	8.7	29
123	Modeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North America. Ecological Applications, 2012, 22, 472-486.	3.8	64
124	Phylogeny and Biogeography of the Carnivorous Plant Family Sarraceniaceae. PLoS ONE, 2012, 7, e39291.	2.5	50
125	Geographic variation in network structure of a nearctic aquatic food web. Global Ecology and Biogeography, 2012, 21, 579-591.	5.8	52
126	Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data. PLoS ONE, 2012, 7, e41010.	2.5	638

#	Article	IF	Citations
127	Microclimatic effects of the loss of a foundation species from New England forests. Ecosphere, 2012, 3, 1-16.	2.2	31
128	Analysis of abrupt transitions in ecological systems. Ecosphere, 2011, 2, art129.	2.2	239
129	Pollen Morphology and Its Relationship to Taxonomy of the Genus Sarracenia (Sarraceniaceae). Rhodora, 2011, 113, 235-251.	0.1	10
130	Heating up the forest: openâ€top chamber warming manipulation of arthropod communities at Harvard and Duke Forests. Methods in Ecology and Evolution, 2011, 2, 534-540.	5.2	57
131	Species Richness and Trophic Diversity Increase Decomposition in a Co-Evolved Food Web. PLoS ONE, 2011, 6, e20672.	2.5	37
132	Global diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	4.1	87
133	Ecophysiological traits of terrestrial and aquatic carnivorous plants: are the costs and benefits the same?. Oikos, 2011, 120, 1721-1731.	2.7	34
134	Proteomic characterization of the major arthropod associates of the carnivorous pitcher plant <i>Sarracenia purpurea </i> . Proteomics, 2011, 11, 2354-2358.	2.2	3
135	Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2011, 2, art62.	2.2	29
136	Influence of fire on a rare serpentine plant assemblage: A 5â€year study of <i>Darlingtonia</i> fens. American Journal of Botany, 2011, 98, 801-811.	1.7	6
137	Response of macroarthropod assemblages to the loss of hemlock (<i>Tsuga canadensis</i>), a foundation species. Ecosphere, 2011, 2, art74.	2.2	37
138	A reply to Millspaugh and Gitzen. Frontiers in Ecology and the Environment, 2010, 8, 515-516.	4.0	0
139	Species interactions and thermal constraints on ant community structure. Oikos, 2010, 119, 551-559.	2.7	77
140	Local―to continentalâ€scale variation in the richness and composition of an aquatic food web. Global Ecology and Biogeography, 2010, 19, 711-723.	5.8	10
141	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	2.3	23
142	Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3621-3631.	4.0	33
143	Repeatability and transparency in ecological research. Ecology, 2010, 91, 2536-2539.	3.2	67
144	The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE, 2010, 5, e10095.	2.5	969

#	Article	IF	CITATIONS
145	Paths to statistical fluency for ecologists. Frontiers in Ecology and the Environment, 2010, 8, 362-370.	4.0	30
146	Ecological boundary detection using Bayesian areal wombling. Ecology, 2010, 91, 3448-3455.	3.2	36
147	Clear and Precise Specification of Ecological Data Management Processes and Dataset Provenance. IEEE Transactions on Automation Science and Engineering, 2010, 7, 189-195.	5.2	16
148	Partitioning diversity < sup > 1 < /sup > . Ecology, 2010, 91, 1962-1963.	3.2	181
149	Experimentally testing the role of foundation species in forests: the Harvard Forest Hemlock Removal Experiment. Methods in Ecology and Evolution, 2010, 1, 168-179.	5.2	63
150	Predicting the impact of hemlock woolly adelgid on carbon dynamics of eastern United States forests. Canadian Journal of Forest Research, 2010, 40, 119-133.	1.7	70
151	The Pitcher Plant Sarracenia purpurea Can Directly Acquire Organic Nitrogen and Short-Circuit the Inorganic Nitrogen Cycle. PLoS ONE, 2009, 4, e6164.	2.5	31
152	Observer bias and the detection of lowâ€density populations. Ecological Applications, 2009, 19, 1673-1679.	3.8	182
153	Construction costs, payback times, and the leaf economics of carnivorous plants. American Journal of Botany, 2009, 96, 1612-1619.	1.7	41
154	Nectar, not colour, may lure insects to their death. Biology Letters, 2009, 5, 469-472.	2.3	66
155			
	EvoSoap. Nature, 2009, 458, 938-938.	27.8	O
156	EvoSoap. Nature, 2009, 458, 938-938. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	27.8	233
156 157	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters,		
	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333. Energetics and the evolution of carnivorous plants—Darwin's â€~most wonderful plants in the world'.	6.4	233
157	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333. Energetics and the evolution of carnivorous plantsâ€"Darwin's â€~most wonderful plants in the world'. Journal of Experimental Botany, 2009, 60, 19-42. Indicators of regime shifts in ecological systems: What do we need to know and when do we need to	6.4 4.8	233
157	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333. Energetics and the evolution of carnivorous plantsâ€"Darwin's †most wonderful plants in the world'. Journal of Experimental Botany, 2009, 60, 19-42. Indicators of regime shifts in ecological systems: What do we need to know and when do we need to know it. Ecological Applications, 2009, 19, 799-816.	6.4 4.8 3.8	233 222 93
157 158 159	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333. Energetics and the evolution of carnivorous plants—Darwin's †most wonderful plants in the world'. Journal of Experimental Botany, 2009, 60, 19-42. Indicators of regime shifts in ecological systems: What do we need to know and when do we need to know it. Ecological Applications, 2009, 19, 799-816. Forecast for Reproducible Data: Partly Cloudy. Science, 2009, 325, 1622-1622.	6.4 4.8 3.8	233 222 93

#	Article	IF	CITATIONS
163	A keystone predator controls bacterial diversity in the pitcherâ€plant (⟨i⟩Sarracenia purpurea⟨ i⟩) microecosystem. Environmental Microbiology, 2008, 10, 2257-2266.	3.8	59
164	Managing mangroves with benthic biodiversity in mind: Moving beyond roving banditry. Journal of Sea Research, 2008, 59, 2-15.	1.6	154
165	LINKING THE BROWN AND GREEN: NUTRIENT TRANSFORMATION AND FATE IN THE <i>SARRACENIA </i> /i>MICROECOSYSTEM. Ecology, 2008, 89, 898-904.	3.2	68
166	Experience in using a process language to define scientific workflow and generate dataset provenance. , 2008, , .		22
167	Rapid Inventory of the Ant Assemblage in a Temperate Hardwood Forest: Species Composition and Assessment of Sampling Methods. Environmental Entomology, 2007, 36, 766-775.	1.4	59
168	METABOLIC THEORY AND PATTERNS OF SPECIES RICHNESS1. Ecology, 2007, 88, 1889-1889.	3.2	2
169	Ensuring reliable datasets for environmental models and forecasts. Ecological Informatics, 2007, 2, 237-247.	5.2	29
170	Nitrogen cycling dynamics in the carnivorous northern pitcher plant, <i>Sarracenia purpurea </i> Functional Ecology, 2007, 21, 835-843.	3.6	42
171	Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. Journal of Biogeography, 2007, 34, 1632-1641.	3.0	83
172	Rapid Inventory of the Ant Assemblage in a Temperate Hardwood Forest: Species Composition and Assessment of Sampling Methods. Environmental Entomology, 2007, 36, 766-775.	1.4	33
173	Food-Web Models Predict Species Abundances in Response to Habitat Change. PLoS Biology, 2006, 4, e324.	5.6	67
174	ANALYTIC WEBS SUPPORT THE SYNTHESIS OF ECOLOGICAL DATA SETS. Ecology, 2006, 87, 1345-1358.	3.2	36
175	Forecasting Extinction Risk With Nonstationary Matrix Models. , 2006, 16, 51-61.		38
176	Nutrient Limitation and Stoichiometry of Carnivorous Plants. Plant Biology, 2006, 8, 740-747.	3.8	158
177	The Seed Bank of Hemlock Forests: Implications for Forest Regeneration Following Hemlock Decline 1. Journal of the Torrey Botanical Society, 2006, 133, 393-402.	0.3	27
178	Spatial Distribution and Impacts of Moth Herbivory on Northern Pitcher Plants. Northeastern Naturalist, 2006, 13, 43-56.	0.3	22
179	Limits to reproductive success of <i>Sarracenia purpurea</i> (Sarraceniaceae). American Journal of Botany, 2006, 93, 1660-1666.	1.7	40
180	Process Technology to Facilitate the Conduct of Science. Lecture Notes in Computer Science, 2006, , 403-415.	1.3	10

#	Article	IF	CITATIONS
181	The effects of fire, local environment and time on ant assemblages in fens and forests. Diversity and Distributions, 2005, 11, 487-497.	4.1	50
182	Red-spotted Newts: An Unusual Nutrient Source for Northern Pitcher Plants. Northeastern Naturalist, 2005, 12, 1-10.	0.3	10
183	IMPROVING THE PRECISION OF ESTIMATES OF THE FREQUENCY OF RARE EVENTS. Ecology, 2005, 86, 1114-1123	.3.2	64
184	The cost of carnivory for <i>Darlingtonia californica</i> (Sarraceniaceae): evidence from relationships among leaf traits. American Journal of Botany, 2005, 92, 1085-1093.	1.7	41
185	PREY ADDITION ALTERS NUTRIENT STOICHIOMETRY OF THE CARNIVOROUS PLANT SARRACENIA PURPUREA. Ecology, 2005, 86, 1737-1743.	3.2	61
186	Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 2005, 3, 479-486.	4.0	1,461
187	Bayesian inference in ecology. Ecology Letters, 2004, 7, 509-520.	6.4	572
188	Wetlands of Central America. Wetlands Ecology and Management, 2004, 12, 3-55.	1.5	117
189	Morphological variation in <i>Sarracenia purpurea</i> (Sarraceniaceae): geographic, environmental, and taxonomic correlates. American Journal of Botany, 2004, 91, 1930-1935.	1.7	62
190	Title is missing!. Hydrobiologia, 2003, 497, 53-62.	2.0	32
191	Reverse latitudinal trends in species richness of pitcher-plant food webs. Ecology Letters, 2003, 6, 825-829.	6.4	82
192	The evolutionary ecology of carnivorous plants. Advances in Ecological Research, 2003, 33, 1-74.	2.7	67
193	Seed dispersal and seedling establishment of <i>Sarracenia purpurea</i> (Sarraceniaceae). American Journal of Botany, 2002, 89, 1024-1026.	1.7	25
194	Controlled publication of digital scientific data. Communications of the ACM, 2002, 45, 97-101.	4.5	31
195	NITROGEN DEPOSITION AND EXTINCTION RISK IN THE NORTHERN PITCHER PLANT, SARRACENIA PURPUREA. Ecology, 2002, 83, 2758-2765.	3.2	56
196	ANT DIVERSITY IN PITCHER-PLANT BOGS OF MASSACHUSETTS. Northeastern Naturalist, 2002, 9, 267-284.	0.3	18
197	Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4409-4412.	7.1	112
198	BIOGEOGRAPHY AT A REGIONAL SCALE: DETERMINANTS OF ANT SPECIES DENSITY IN NEW ENGLAND BOGS AND FORESTS. Ecology, 2002, 83, 1604-1609.	3.2	130

#	Article	IF	Citations
199	Nutrient regeneration by rotifers in New England (USA) bogs. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2002, 28, 1328-1331.	0.1	4
200	Macroecology of mangroves: large-scale patterns and processes in tropical coastal forests. Trees - Structure and Function, 2002, 16, 181-194.	1.9	169
201	Assembly rules for New England ant assemblages. Oikos, 2002, 99, 591-599.	2.7	170
202	Evolutionary ecology of carnivorous plants. Trends in Ecology and Evolution, 2001, 16, 623-629.	8.7	178
203	Interspecific and intraspecific variation in seed size and germination requirements of Sarracenia (Sarraceniaceae). American Journal of Botany, 2001, 88, 429-437.	1.7	60
204	Mangrove Restoration: Do We Know Enough?. Restoration Ecology, 2000, 8, 219-229.	2.9	266
205	Testing patterns of zonation in mangroves: scale dependence and environmental correlates in the Sundarbans of Bangladesh. Journal of Ecology, 2000, 88, 813-824.	4.0	107
206	CUMULATIVE EFFECTS OF OIL SPILLS ON MANGROVES. , 1999, 9, 1490-1492.		3
207	Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 1999, 8, 95-115.	5.8	247
208	Seed bank composition of a northeastern U. S. tussock swamp. Wetlands, 1999, 19, 255-261.	1.5	16
209	Title is missing!. , 1998, 385, 193-200.		44
210	Treefall gap size effects on above―and belowâ€ground processes in a tropical wet forest. Journal of Ecology, 1998, 86, 597-609.	4.0	297
211	Global Patterns of Pre-Dispersal Propagule Predation in Mangrove Forests1. Biotropica, 1997, 29, 318-330.	1.6	63
212	Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove () Tj ETQq0 0	O rgBT /Ov	verlock 10 Tf
213	Anthropogenic Disturbance of Caribbean Mangrove Ecosystems: Past Impacts, Present Trends, and Future Predictions. Biotropica, 1996, 28, 549.	1.6	193
214	Introduction: Ecological Applications of Bayesian Inference. , 1996, 6, 1034-1035.		21
215	An Introduction to Bayesian Inference for Ecological Research and Environmental Decision-Making. , 1996, 6, 1036-1046.		337
216	Spatial and Temporal Variability in Growth of Rhizophora Mangle Saplings on Coral Cays: Links with Variation in Insolation, Herbivory, and Local Sedimentation Rate. Journal of Ecology, 1996, 84, 717.	4.0	70

#	Article	IF	CITATIONS
217	Sunâ€shade adaptability of the red mangrove, <i>Rhizophora mangle</i> (Rhizophoraceae): Changes through ontogeny at several levels of biological organization. American Journal of Botany, 1996, 83, 1131-1143.	1.7	73
218	Facultative Mutualism Between Red Mangroves and Root-Fouling Sponges in Belizean Mangal. Ecology, 1996, 77, 2431-2444.	3.2	121
219	Scale-Dependent Spatial and Temporal Variability in Biogeography of Mangrove Root Epibiont Communities. Ecological Monographs, 1996, 66, 45-66.	5.4	110
220	Sun-Shade Adaptability of the Red Mangrove, Rhizophora mangle (Rhizophoraceae): Changes Through Ontogeny at Several Levels of Biological Organization. American Journal of Botany, 1996, 83, 1131.	1.7	25
221	Xylem vascular anatomy and water transport of Salicornia europaea. Aquatic Botany, 1993, 45, 325-339.	1.6	10
222	Dynamics of herbivory in Belizean mangal. Journal of Tropical Ecology, 1993, 9, 435-453.	1.1	26
223	Seedling survivorship, growth, and response to disturbance in Belizean mangal. American Journal of Botany, 1993, 80, 1137-1145.	1.7	119
224	Seedling Survivorship, Growth, and Response to Disturbance in Belizean Mangal. American Journal of Botany, 1993, 80, 1137.	1.7	51
225	The ecology of Belizean mangrove-root fouling communities: patterns of epibiont distribution and abundance, and effects on root growth. Hydrobiologia, 1992, 247, 87-98.	2.0	45
226	The ecology of Belizean mangrove-root fouling communities: patterns of epibiont distribution and abundance, and effects on root growth., 1992,, 87-98.		18
227	The Effect of Understory Palms and Cyclanths on the Growth and Survival of Inga Seedlings. Biotropica, 1991, 23, 225.	1.6	93
228	Patterns of Herbivory in Belizean Mangrove Swamps. Biotropica, 1991, 23, 555.	1.6	70
229	The ecology of Belizean mangrove-root fouling communities. I. Epibenthic fauna are barriers to isopod attack of red mangrove roots. Journal of Experimental Marine Biology and Ecology, 1990, 142, 91-104.	1.5	73
230	BRANCHING PATTERNS OF SALICORNIA EUROPAEA (CHENOPODIACEAE) AT DIFFERENT SUCCESSIONAL STAGES: A COMPARISON OF THEORETICAL AND REAL PLANTS. American Journal of Botany, 1988, 75, 501-512.	1.7	26
231	Branching Patterns of Salicornia europaea (Chenopodiaceae) at Different Successional Stages: A Comparison of Theoretical and Real Plants. American Journal of Botany, 1988, 75, 501.	1.7	13
232	Determinants of Pattern in a New England Salt Marsh Plant Community. Ecological Monographs, 1987, 57, 129-147.	5.4	568
233	Effect of Seed Dimorphism on the Density-Dependent Dynamics of Experimental Populations of Atriplex triangularis (Chenopodiaceae). American Journal of Botany, 1987, 74, 1280.	1.7	35
234	Effects of Competition, Disturbance, and Herbivory on Salicornia Europaea. Ecology, 1987, 68, 576-586.	3.2	129

AARON M ELLISON

#	Article	IF	CITATION
235	EFFECT OF SEED DIMORPHISM ON THE DENSITYâ€DEPENDENT DYNAMICS OF EXPERIMENTAL POPULATIONS OF ATRIPLEX TRIANGULARIS (CHENOPODIACEAE). American Journal of Botany, 1987, 74, 1280-1288.	1.7	89
236	Consumer pressure and seed set in a salt marsh perennial plant community. Oecologia, 1987, 71, 190-200.	2.0	73
237	SEASONAL PATTERNS IN THE BELOWGROUND BIOMASS OF SPARTINA ALTERNIFLORA (GRAMINEAE) ACROSS A TIDAL GRADIENT. American Journal of Botany, 1986, 73, 1548-1554.	1.7	32
238	Survivorship and Spatial Development of Spartina alterniflora Loisel. (Gramineae) Seedlings in a New England Salt Marsh. Annals of Botany, 1986, 58, 249-258.	2.9	43
239	Seasonal Patterns in the Belowground Biomass of Spartina alterniflora (Gramineae) Across a Tidal Gradient. American Journal of Botany, 1986, 73, 1548.	1.7	16
240	Constructive Friction Creates a Third Space for Art/Science Collaborations. Leonardo, 0, , 283-288.	0.3	1