MarÃ-a J MazÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9168926/publications.pdf Version: 2024-02-01

		471509	454955
33	913	17	30
papers	citations	h-index	g-index
33	33	33	2924
all docs	docs citations	times ranked	citing authors

Μαρδα Ι Μαζδ3Ν

#	Article	IF	CITATIONS
1	LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Scientific Reports, 2017, 7, 44988.	3.3	93
2	Specific phosphoantibodies reveal two phosphorylation sites in yeast Pma1 in response to glucose. FEMS Yeast Research, 2015, 15, fov030.	2.3	21
3	Characterization of Two Second-Site Mutations Preventing Wild Type Protein Aggregation Caused by a Dominant Negative PMA1 Mutant. PLoS ONE, 2013, 8, e67080.	2.5	0
4	Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscular Disorders, 2012, 22, 231-243.	0.6	31
5	Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Molecular Microbiology, 2011, 79, 1339-1352.	2.5	6
6	A Dominant Negative Mutant of Pma1 Interferes with the Folding of the Wild Type Enzyme. Traffic, 2010, 11, 37-47.	2.7	5
7	Efficient degradation of misfolded mutant Pma1 by endoplasmic reticulumâ€associated degradation requires Atg19 and the Cvt/autophagy pathway. Molecular Microbiology, 2007, 63, 1069-1077.	2.5	15
8	Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 164-170.	2.6	58
9	Ycf1-dependent cadmium detoxification by yeast requires phosphorylation of residues Ser908and Thr911. FEBS Letters, 2004, 577, 322-326.	2.8	34
10	Cell-type-dependent repression of yeast a-specific genes requires ltc1p, a subunit of the Isw2p–ltc1p chromatin remodelling complex. Microbiology (United Kingdom), 2003, 149, 341-351.	1.8	39
11	Yol082p, a Novel CVT Protein Involved in the Selective Targeting of Aminopeptidase I to the Yeast Vacuole. Journal of Biological Chemistry, 2001, 276, 29210-29217.	3.4	68
12	Domain Interactions in the Yeast ATP Binding Cassette Transporter Ycf1p: Intragenic Suppressor Analysis of Mutations in the Nucleotide Binding Domains. Journal of Bacteriology, 2001, 183, 4761-4770.	2.2	23
13	Disruption of six novel ORFs fromSaccharomyces cerevisiae chromosome VII and phenotypic analysis of the deletants. Yeast, 2000, 16, 621-630.	1.7	6
14	Targeting of Aminopeptidase I to the Yeast Vacuole Is Mediated by Ssa1p, a Cytosolic Member of the 70-kDa Stress Protein Family. Journal of Biological Chemistry, 2000, 275, 34054-34059.	3.4	10
15	Functional Domain Analysis of the Yeast ABC Transporter Ycf1p by Site-directed Mutagenesis. Journal of Biological Chemistry, 1999, 274, 23584-23590.	3.4	27
16	The prepropeptide of vacuolar aminopeptidase I is necessary and sufficient to target the fluorescent reporter protein GFP to the vacuole of yeast by the Cvt pathway. Molecular Microbiology, 1999, 33, 52-62.	2.5	14
17	Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis. Biochemical Journal, 1998, 332, 153-159.	3.7	84
18	Sequence analysis of a 14·6 kb DNA fragment of Saccharomyces cerevisiae chromosome VII reveals SEC27, SSM1b, a putative S-adenosylmethionine-dependent enzyme and six new open reading frames. Yeast, 1996, 12, 887-892.	1.7	6

MarÃa J MazÃ³n

#	Article	IF	CITATIONS
19	cAMP-dependent protein kinase is not involved in catabolite inactivation of the transport of sugars in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1192, 143-146.	2.6	9
20	Low activity of the yeast cAMP-dependent protein kinase catalytic subunit Tpk3 is due to the poor expression of the TPK3 gene. FEBS Journal, 1993, 213, 501-506.	0.2	29
21	Chemotactic stimulation of aggregation-stage Dictyostelium cells induces rapid changes in energy metabolism, as measured by succinic thiokinase phosphorylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1176, 175-182.	4.1	3
22	Yeast cAMP-dependent protein kinase can be associated to the plasma membrane. Biochemical and Biophysical Research Communications, 1988, 151, 561-567.	2.1	18
23	Internal acidification and cAMP increase are not correlated in Saccharomyces cerevisiae. FEBS Journal, 1987, 165, 671-674.	0.2	29
24	Biological roles of cAMP: similarities and differences between organisms. Trends in Biochemical Sciences, 1985, 10, 210-212.	7.5	31
25	Activation of yeast plasma membrane ATPase by phorbol ester. FEBS Letters, 1985, 192, 95-98.	2.8	43
26	Regulation of Yeast Fructose-1,6-Bisphosphatase by Phosphorylation–Dephosphorylation. Current Topics in Cellular Regulation, 1985, , 159-169.	9.6	0
27	Pitfalls in the measurement of membrane potential in yeast cells using tetraphenylphosphonium. Biochimica Et Biophysica Acta - Biomembranes, 1984, 778, 516-520.	2.6	17
28	Inactivation and phosphorylation of yeast fructose 1,6-bisphosphatase. Biochemical Society Transactions, 1982, 10, 326-327.	3.4	12
29	Kinetic differences between two interconvertible forms of fructose-1,6-bisphosphatase from Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 1982, 218, 478-482.	3.0	39
30	Phosphorylation and Inactivation of Yeast Fructoseâ€Bisphosphatase <i>in vivo</i> by Glucose and by Proton Ionophores. FEBS Journal, 1982, 127, 605-608.	0.2	116
31	Transport of gluconate in Rhodotorula glutinis. Archives of Biochemistry and Biophysics, 1978, 185, 466-472.	3.0	1
32	Hexose kinases from Rhodotorula glutinis. Archives of Biochemistry and Biophysics, 1975, 167, 452-457.	3.0	15
33	Identification of an unusual phosphofructokinase in the red yeast Rhodotorula glutinis. Biochemical and Biophysical Research Communications, 1974, 61, 1304-1309.	2.1	11