John G Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9168828/publications.pdf

Version: 2024-02-01

120 papers 4,702 citations

38 h-index 64 g-index

122 all docs

 $\begin{array}{c} 122 \\ \\ \text{docs citations} \end{array}$

122 times ranked

3118 citing authors

#	Article	lF	CITATIONS
1	Violetâ€blue 405â€nm Lightâ€based Photoinactivation for Pathogen Reduction of Human Plasma Provides Broad Antibacterial Efficacy Without Visible Degradation of Plasma Proteins. Photochemistry and Photobiology, 2022, 98, 504-512.	2.5	12
2	Visible 405 nm Violet-Blue Light Successfully Inactivates HIV-1 in Human Plasma. Pathogens, 2022, 11, 778.	2.8	4
3	Complete Inactivation of Blood Borne Pathogen Trypanosoma cruzi in Stored Human Platelet Concentrates and Plasma Treated With 405 nm Violet-Blue Light. Frontiers in Medicine, 2020, 7, 617373.	2.6	12
4	Airborne Decontamination of an Intensive Care Isolation Room using 405 nm Antimicrobial Light Technology. Access Microbiology, 2020, 2, .	0.5	0
5	Continuous monitoring of aerial bioburden within intensive care isolation rooms and identification ofÂhigh-risk activities. Journal of Hospital Infection, 2019, 103, 185-192.	2.9	10
6	Non-ionizing 405 nm Light as a Potential Bactericidal Technology for Platelet Safety: Evaluation of in vitro Bacterial Inactivation and in vivo Platelet Recovery in Severe Combined Immunodeficient Mice. Frontiers in Medicine, 2019, 6, 331.	2.6	10
7	Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380–480 nm Violetâ€Blue Light. Photochemistry and Photobiology, 2018, 94, 445-458.	2.5	67
8	Efficacy of antimicrobial 405 nm blue-light for inactivation of airborne bacteria., 2018,,.		3
9	New Proof-of-Concept in Viral Inactivation: Virucidal Efficacy of 405Ânm Light Against Feline Calicivirus as a Model for Norovirus Decontamination. Food and Environmental Virology, 2017, 9, 159-167.	3.4	48
10	Assessment of the potential for resistance to antimicrobial violet-blue light in Staphylococcus aureus. Antimicrobial Resistance and Infection Control, 2017, 6, 100.	4.1	49
11	The effects of 405 nm light on bacterial membrane integrity determined by salt and bile tolerance assays, leakage of UV-absorbing material and SYTOX green labelling. Microbiology (United Kingdom), 2016, 162, 1680-1688.	1.8	53
12	A New Proof of Concept in Bacterial Reduction: Antimicrobial Action of Violet-Blue Light (405 nm) in <i>Ex Vivo</i> Stored Plasma. Journal of Blood Transfusion, 2016, 2016, 1-11.	3.3	23
13	A comparison study of the degradative effects and safety implications of UVC and 405Ânm germicidal light sources for endoscope storage. Polymer Degradation and Stability, 2016, 133, 249-254.	5.8	22
14	Oxidation and Biodecontamination Effects of Impulsive Discharges in Atmospheric Air. IEEE Transactions on Plasma Science, 2016, 44, 2145-2155.	1.3	1
15	TiO ₂ -Coated Electrodes for Pulsed Electric Field Treatment of Microorganisms. IEEE Transactions on Plasma Science, 2016, 44, 2121-2128.	1.3	11
16	Synergistic efficacy of 405Ânm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores. Anaerobe, 2016, 37, 72-77.	2.1	21
17	Comparative Sensitivity of Trichophyton and Aspergillus Conidia to Inactivation by Violet-Blue Light Exposure. Photomedicine and Laser Surgery, 2016, 34, 36-41.	2.0	25
18	Cytotoxic responses to 405nm light exposure in mammalian and bacterial cells: Involvement of reactive oxygen species. Toxicology in Vitro, 2016, 33, 54-62.	2.4	97

#	Article	IF	Citations
19	Impulsive streamer discharges in atmospheric air for cleaning and decontamination. , 2015, , .		О
20	Inactivation of micro-organisms isolated from infected lower limb arthroplasties using high-intensity narrow-spectrum (HINS) light. Bone and Joint Journal, 2015, 97-B, 283-288.	4.4	20
21	Fluorescence detection of hydroxyl radicals in water produced by atmospheric pulsed discharges. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1856-1865.	2.9	22
22	Pulsed electric field treatment of saccharomyces cerevisiae using different waveforms. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1841-1848.	2.9	17
23	Airborne bacterial dispersal during and after dressing and bed changes on burns patients. Burns, 2015, 41, 39-48.	1.9	15
24	Inactivation of <i>Streptomyces </i> phage É,C31 by 405 nm light. Bacteriophage, 2014, 4, e32129.	1.9	30
25	Differential sensitivity of osteoblasts and bacterial pathogens to 405-nm light highlighting potential for decontamination applications in orthopedic surgery. Journal of Biomedical Optics, 2014, 19, 105001.	2.6	26
26	Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405nm light under sub-lethal temperature, salt and acid stress conditions. International Journal of Food Microbiology, 2014, 170, 91-98.	4.7	48
27	Pulsed Electric Field Treatment of Microalgae: Inactivation Tendencies and Energy Consumption. IEEE Transactions on Plasma Science, 2014, 42, 3191-3196.	1.3	22
28	Photoinactivation of Bacteria Attached to Glass and Acrylic Surfaces by 405Ânm Light: Potential Application for Biofilm Decontamination. Photochemistry and Photobiology, 2013, 89, 927-935.	2.5	61
29	Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biology, 2013, 117, 519-527.	2.5	99
30	Steady-State Corona Discharges in Atmospheric Air for Cleaning and Decontamination. IEEE Transactions on Plasma Science, 2013, 41, 2871-2878.	1.3	7
31	Pulsed electric field assisted treatment of microorganisms for lysis. , 2013, , .		3
32	Sporicidal Effects of Highâ€Intensity 405 nm Visible Light on Endosporeâ€Forming Bacteria. Photochemistry and Photobiology, 2013, 89, 120-126.	2.5	77
33	Quantifying bacterial transfer from patients to staff during burns dressing and bed changes: Implications for infection control. Burns, 2013, 39, 220-228.	1.9	18
34	Bactericidal Effect of Corona Discharges in Atmospheric Air. IEEE Transactions on Plasma Science, 2012, 40, 2322-2333.	1.3	44
35	Clinical studies of the High-Intensity Narrow-Spectrum light Environmental Decontamination System (HINS-light EDS), for continuous disinfection in the burn unit inpatient and outpatient settings. Burns, 2012, 38, 69-76.	1.9	56
36	Bactericidal Effects of 405 nm Light Exposure Demonstrated by Inactivation of <i>Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium</i> Species in Liquid Suspensions and on Exposed Surfaces. Scientific World Journal, The, 2012, 2012, 1-8.	2.1	116

#	Article	IF	Citations
37	Highâ€Intensity 405 nm Light Inactivation of <i>Listeria monocytogenes</i> . Photochemistry and Photobiology, 2012, 88, 1280-1286.	2.5	70
38	Inactivation of microorganisms within collagen gel biomatrices using pulsed electric field treatment. Journal of Materials Science: Materials in Medicine, 2012, 23, 507-515.	3.6	5
39	Pulsed periodic corona discharges for biological decontamination. , 2011, , .		O
40	Decontamination of collagen biomatrices with combined pulsed electric field and nisin treatment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 287-293.	3.4	5
41	Effect of 405-nm high-intensity narrow-spectrum light on fibroblast-populated collagen lattices: an in vitro model of wound healing. Journal of Biomedical Optics, 2011, 16, 048003.	2.6	38
42	Inactivation of <i>Campylobacter jejuni </i> by Exposure to High-Intensity 405-nm Visible Light. Foodborne Pathogens and Disease, 2010, 7, 1211-1216.	1.8	57
43	The thermo-mechanical performance of glass-fibre reinforced polyamide 66 during glycol–water hydrolysis conditioning. Composites Part A: Applied Science and Manufacturing, 2010, 41, 820-826.	7.6	25
44	Exposure of 3T3 mouse Fibroblasts and Collagen to High Intensity Blue Light. IFMBE Proceedings, 2009, , 1352-1355.	0.3	11
45	Inactivation of Bacterial Pathogens following Exposure to Light from a 405-Nanometer Light-Emitting Diode Array. Applied and Environmental Microbiology, 2009, 75, 1932-1937.	3.1	324
46	Pulsed electric field as a potential new method for microbial inactivation in scaffold materials for tissue engineering: The effect on collagen as a scaffold. Journal of Biomedical Materials Research - Part A, 2009, 90A, 844-851.	4.0	7
47	Inactivation of Problematic Micro-organisms in Collagen Based Media by Pulsed Electric Field Treatment (PEF). IFMBE Proceedings, 2009, , 1320-1324.	0.3	0
48	The role of oxygen in the visible-light inactivation of Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 2008, 92, 180-184.	3.8	139
49	High-intensity narrow-spectrum light inactivation and wavelength sensitivity of <i>Staphylococcus aureus </i> . FEMS Microbiology Letters, 2008, 285, 227-232.	1.8	118
50	Pulsed electric field treatment as a potential method for microbial inactivation in scaffold materials for tissue engineering: the inactivation of bacteria in collagen gel. Journal of Applied Microbiology, 2008, 105, 963-969.	3.1	4
51	Photoinactivation and Photoreactivation Responses by Bacterial Pathogens after Exposure to Pulsed UV-Light., 2008,,.		12
52	Pulsed-Plasma Disinfection of Water ContainingEscherichia coli. Japanese Journal of Applied Physics, 2007, 46, 1137-1141.	1.5	35
53	Pulsed-Plasma Gas-Discharge Inactivation of Microbial Pathogens in Chilled Poultry Wash Water. Journal of Food Protection, 2007, 70, 2805-2810.	1.7	62
54	Pulsed UV-light inactivation of poliovirus and adenovirus. Letters in Applied Microbiology, 2007, 45, 564-567.	2.2	29

#	Article	IF	Citations
55	Evidence of lethal and sublethal injury in food-borne bacterial pathogens exposed to high-intensity pulsed-plasma gas discharges. Letters in Applied Microbiology, 2007, 46, 071105095418001-???.	2.2	28
56	Forces acting on biological cells in external electrical fields. , 2006, , .		2
57	Transient electrical field across cellular membranes: pulsed electric field treatment of microbial cells. Journal Physics D: Applied Physics, 2006, 39, 596-603.	2.8	44
58	The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields. IEEE Transactions on Plasma Science, 2005, 33, 1287-1293.	1.3	33
59	Pulsed ultra-violet inactivation spectrum of Escherichia coli. Water Research, 2005, 39, 2921-2925.	11.3	170
60	Use of a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to high-intensity pulsed electric fields. Letters in Applied Microbiology, 2004, 39, 246-251.	2.2	27
61	Pulsed electric field inactivation of spoilage microorganisms in alcoholic beverages. Proceedings of the IEEE, 2004, 92, 1138-1143.	21.3	22
62	Development of an integrated solid-state generator for light inactivation of food-related pathogenic bacteria. Measurement Science and Technology, 2003, 14, N26-N32.	2.6	20
63	Comparison of the effectiveness of biphase and monophase rectangular pulses for the inactivation of micro-organisms using pulsed electric fields. IEEE Transactions on Plasma Science, 2002, 30, 1525-1531.	1.3	40
64	Plasma inactivation of food-related microorganisms in liquids. Radiation Physics and Chemistry, 2002, 65, 507-513.	2.8	68
65	Putative Virulence Factor Expression by Clinical and Food Isolates of Bacillus spp. after Growth in Reconstituted Infant Milk Formulae. Applied and Environmental Microbiology, 2001, 67, 3873-3881.	3.1	106
66	Inactivation of Mycobacterium paratuberculosis by Pulsed Electric Fields. Applied and Environmental Microbiology, 2001, 67, 2833-2836.	3.1	67
67	Cellular morphology of rough forms of Listeria monocytogenes isolated from clinical and food samples. Letters in Applied Microbiology, 2000, 31, 319-322.	2.2	11
68	Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Letters in Applied Microbiology, 2000, 31, 110-114.	2.2	68
69	Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Transactions on Plasma Science, 2000, 28, 83-88.	1.3	170
70	Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields. IEEE Transactions on Plasma Science, 2000, 28, 144-149.	1.3	61
71	Virulent Rough Filaments of <i>Listeria monocytogenes</i> from Clinical and Food Samples Secreting Wild-Type Levels of Cell-Free p60 Protein. Journal of Clinical Microbiology, 2000, 38, 2643-2648.	3.9	38
72	Prediction of Toxigenic Fungal Growth in Buildings by Using a Novel Modelling System. Applied and Environmental Microbiology, 1999, 65, 4814-4821.	3.1	60

#	Article	IF	CITATIONS
73	Pulsed-Light Inactivation of Food-Related Microorganisms. Applied and Environmental Microbiology, 1999, 65, 1312-1315.	3.1	222
74	Increased cytotoxicity of food-borne mycotoxins toward human cell lines in vitro via enhanced cytochrome p450 expression using the MTT bioassay. Mycopathologia, 1999, 148, 97-102.	3.1	46
75	Comparative cytotoxicity of fumonisin B1 in two cell lines derived from normal human bronchial epithelial cells using four distinct bioassay techniques. Mycotoxin Research, 1999, 15, 81-90.	2.3	1
76	Diarrhoeal enterotoxin production by psychrotrophic Bacillus cereus present in reconstituted milk-based infant formulae (MIF). Letters in Applied Microbiology, 1998, 26, 161-165.	2.2	25
77	Light inactivation of food-related pathogenic bacteria using a pulsed power source. Letters in Applied Microbiology, 1998, 27, 67-70.	2.2	114
78	Growth and enterotoxin production by diarrhoeagenic Bacillus cereus in dietary supplements prepared for hospitalized HIV patients. Journal of Hospital Infection, 1998, 38, 139-146.	2.9	12
79	Effectiveness of Cleaning and Disinfection Procedures on the Removal of Enterotoxigenic Bacillus cereus From Infant Feeding Bottles. Journal of Food Protection, 1998, 61, 196-200.	1.7	11
80	Effect of Low-Osmolality Nutrient Media on Growth and Culturability of <i>Campylobacter</i> Species. Applied and Environmental Microbiology, 1998, 64, 4643-4649.	3.1	37
81	Effects of Above-Optimum Growth Temperature and Cell Morphology on Thermotolerance of <i>Listeria monocytogenes</i> Cells Suspended in Bovine Milk. Applied and Environmental Microbiology, 1998, 64, 2065-2071.	3.1	62
82	The bacteriological quality of hospital-prepared infant feeds. Journal of Hospital Infection, 1997, 35, 259-267.	2.9	12
83	Bacteriological Quality of Infant Milk Formulae Examined under a Variety of Preparation and Storage Conditions. Journal of Food Protection, 1997, 60, 1089-1094.	1.7	13
84	Role of mycotoxins in human and animal nutrition and health. Natural Toxins, 1995, 3, 187-192.	1.0	113
85	A study of the microbial content of the domestic kitchen. International Journal of Environmental Health Research, 1995, 5, 109-122.	2.7	66
86	Modes of arrival and establishment of microfungi. Journal of Applied Bacteriology, 1992, 73, 69S-79S.	1.1	1
87	Cytotoxic fungal spores in the indoor atmosphere of the damp domestic environment. FEMS Microbiology Letters, 1992, 100, 337-343.	1.8	31
88	Cytotoxic fungal spores in the indoor atmosphere of the damp domestic environment. FEMS Microbiology Letters, 1992, 100, 337-343.	1.8	29
89	Development and evaluation of a medium for the monitoring of food-borne moulds by capacitance changes. Food Microbiology, 1990, 7, 129-145.	4.2	6
90	The composting of tree bark in small reactors—adiabatic and fixed-temperature experiments. Biological Wastes, 1990, 31, 175-185.	0.2	18

#	Article	IF	CITATIONS
91	The composting of tree bark in small reactorsâ€" self-heating experiments. Biological Wastes, 1990, 31, 145-161.	0.2	17
92	Induction of conductance and capacitance changes by food-borne fungi. Food Microbiology, 1989, 6, 231-244.	4.2	13
93	The incidence of moulds within 525 dwellings in the United Kingdom. International Journal of Environmental Studies, 1989, 35, 105-112.	1.6	12
94	Production of penicillin by immobilized films of Penicillium chrysogenum. Biotechnology Letters, 1987, 9, 471-474.	2.2	6
95	Production of ?-malic acid by Paecilomyces varioti. Biotechnology Letters, 1987, 9, 393-398.	2.2	3
96	Responses of corophium volutator to sediment sulphide. Journal of the Marine Biological Association of the United Kingdom, 1981, 61, 739-748.	0.8	21
97	Processing of model dilute carbohydrate wastes using Aspergillus niger in disc fermenters. Biotechnology Letters, 1981, 3, 451-454.	2.2	3
98	Interrelationships Between Chlorophylls, Carbon, Nitrogen and Heterotrophic Bacteria in an Intertidal Sediment Transect. Marine Ecology - Progress Series, 1981, 6, 277-283.	1.9	4
99	Use of the disc fermenter to examine production of citric acid by Aspergillus niger. Biotechnology Letters, 1980, 2, 99-104.	2.2	27
100	Growth of Candida utilis on enzymatically hydrolysed cassava. Biotechnology Letters, 1980, 2, 35-40.	2.2	6
101	Gas production byEscherichia coliin selective lactose fermentation media. FEMS Microbiology Letters, 1980, 8, 17-21.	1.8	7
102	Synergistic inhibition of Escherichia coligrowth and gas production in selective media. FEMS Microbiology Letters, 1980, 8, 215-219.	1.8	7
103	Variability in gas production by Escherichia coli in enrichment media and its relationship to pH. Applied and Environmental Microbiology, 1980, 40, 309-312.	3.1	13
104	Inconsistent results with the Escherichia coliconfirmatory medium lactose ricinoleate broth. FEMS Microbiology Letters, 1979, 5, 53-56.	1.8	3
105	Cultivation of filamentous fungi in the disc fermenter. Biotechnology Letters, 1979, 1, 269-274.	2.2	12
106	Microcycle conidiation inPaecilomyces varioti. FEMS Microbiology Letters, 1978, 3, 57-60.	1.8	14
107	Microenvironments in marine sediments. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1978, 76, 1-16.	0.2	19
108	Responses of a benthic marine invertebrate to \hat{I}^3 -irradiated sediment. Nature, 1977, 270, 595-596.	27.8	5

#	Article	IF	CITATIONS
109	Control and autolysis of a spherical cell form of Aspergillus niger. Transactions of the British Mycological Society, 1976, 67, 27-31.	0.6	14
110	Changes in Carbon Catabolic Pathways during Synchronous Development of Conidiophores of Aspergillus niger. Journal of General Microbiology, 1972, 71, 495-504.	2.3	18
111	Mitochondrial activity during citric acid production by Aspergillus niger. Transactions of the British Mycological Society, 1972, 59, 51-61.	0.6	33
112	Conidiation and esterase synthesis in Aspergillus niger. Transactions of the British Mycological Society, 1972, 59, 63-IN6.	0.6	15
113	Influence of temperature, media and preservative on spore swelling of Aspergillus niger and Trichoderma viride. Transactions of the British Mycological Society, 1972, 59, 115-IN13.	0.6	4
114	The effects of elevated temperatures on spore swelling and germination in Aspergillus niger. Canadian Journal of Microbiology, 1972, 18, 289-297.	1.7	60
115	Synchronous initiation and maturation of Aspergillus niger conidiophores in culture. Transactions of the British Mycological Society, 1971, 56, 9-IN1.	0.6	43
116	The Production of Conidiophores and Conidia by Newly Germinated Conidia of Aspergillus niger (Microcycle Conidiation). Journal of General Microbiology, 1971, 69, 185-197.	2.3	119
117	Bacteria on intertidal sand grains. Hydrobiologia, 1969, 33, 33-46.	2.0	22
118	Micro-organisms attached to marine sand grains. Journal of the Marine Biological Association of the United Kingdom, 1968, 48, 161-175.	0.8	125
119	Micro-organisms attached to Marine and Freshwater Sand Grains. Nature, 1966, 212, 1059-1060.	27.8	94
120	Effect of different treatments on the dielectric behaviour of microorganisms. , 0, , .		4