Marta Correia-da-Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9168675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Bioactive Flavonoid Hybrids Linked by 1,2,3-Triazole Ring Obtained by Click Chemistry. Molecules, 2022, 27, 230.	3.8	26
2	Gallic acid derivatives as inhibitors of mussel (Mytilus galloprovincialis) larval settlement: Lead optimization, biological evaluation and use in antifouling coatings. Bioorganic Chemistry, 2022, 126, 105911.	4.1	4
3	Sulfated Oligomers of Tyrosol: Toward a New Class of Bioinspired Nonsaccharidic Anticoagulants. Biomacromolecules, 2021, 22, 399-409.	5.4	4
4	Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules, 2021, 26, 2707.	3.8	3
5	From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. Molecules, 2021, 26, 431.	3.8	52
6	Flavonoid Glycosides with a Triazole Moiety for Marine Antifouling Applications: Synthesis and Biological Activity Evaluation. Marine Drugs, 2021, 19, 5.	4.6	16
7	Natural Benzo/Acetophenones as Leads for New Synthetic Acetophenone Hybrids Containing a 1,2,3-Triazole Ring as Potential Antifouling Agents. Marine Drugs, 2021, 19, 682.	4.6	8
8	From Natural Xanthones to Synthetic C-1 Aminated 3,4-Dioxygenated Xanthones as Optimized Antifouling Agents. Marine Drugs, 2021, 19, 638.	4.6	6
9	Multidimensional characterization of a new antifouling xanthone: Structure-activity relationship, environmental compatibility, and immobilization in marine coatings. Ecotoxicology and Environmental Safety, 2021, 228, 112970.	6.0	9
10	Overcoming environmental problems of biocides: Synthetic bile acid derivatives as a sustainable alternative. Ecotoxicology and Environmental Safety, 2020, 187, 109812.	6.0	20
11	Biofouling Inhibition with Grafted Econea Biocide: Toward a Nonreleasing Eco-Friendly Multiresistant Antifouling Coating. ACS Sustainable Chemistry and Engineering, 2020, 8, 12-17.	6.7	34
12	One Step Forward towards the Development of Eco-Friendly Antifouling Coatings: Immobilization of a Sulfated Marine-Inspired Compound. Marine Drugs, 2020, 18, 489.	4.6	15
13	Structure-Antifouling Activity Relationship and Molecular Targets of Bio-Inspired(thio)xanthones. Biomolecules, 2020, 10, 1126.	4.0	21
14	Marine natural flavonoids: chemistry and biological activities. Natural Product Research, 2019, 33, 3260-3272.	1.8	41
15	Isolation and Potential Biological Applications of Haloaryl Secondary Metabolites from Macroalgae. Marine Drugs, 2019, 17, 73.	4.6	37
16	Discovery of a New Xanthone against Glioma: Synthesis and Development of (Pro)liposome Formulations. Molecules, 2019, 24, 409.	3.8	14
17	Antithrombotics from the Sea: Polysaccharides and Beyond. Marine Drugs, 2019, 17, 170.	4.6	42
18	SULFATION PATHWAYS: Potential benefits of a sulfated resveratrol derivative for topical application. Journal of Molecular Endocrinology, 2018, 61, M27-M39.	2.5	5

MARTA CORREIA-DA-SILVA

#	Article	IF	CITATIONS
19	SULFATION PATHWAYS: Sources and biological activities of marine sulfated steroids. Journal of Molecular Endocrinology, 2018, 61, T211-T231.	2.5	28
20	Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. European Journal of Medicinal Chemistry, 2018, 151, 272-284.	5.5	32
21	Synthesis of New Glycosylated Flavonoids with Inhibitory Activity on Cell Growth. Molecules, 2018, 23, 1093.	3.8	9
22	Potential of synthetic chalcone derivatives to prevent marine biofouling. Science of the Total Environment, 2018, 643, 98-106.	8.0	38
23	Antifouling potential of Nature-inspired sulfated compounds. Scientific Reports, 2017, 7, 42424.	3.3	55
24	Anticancer and cancer preventive compounds from edible marine organisms. Seminars in Cancer Biology, 2017, 46, 55-64.	9.6	53
25	An antifouling model from the sea: a review of 25Âyears of zosteric acid studies. Biofouling, 2017, 33, 927-942.	2.2	25
26	A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells. Bioorganic and Medicinal Chemistry, 2017, 25, 581-596.	3.0	45
27	Strategies to Overcome Heparins' Low Oral Bioavailability. Pharmaceuticals, 2016, 9, 37.	3.8	22
28	Structure–activity relationship studies for multitarget antithrombotic drugs. Future Medicinal Chemistry, 2016, 8, 2305-2355.	2.3	8
29	Drug-like Properties and ADME of Xanthone Derivatives: The Antechamber of Clinical Trials. Current Medicinal Chemistry, 2016, 23, 3654-3686.	2.4	28
30	Emerging Sulfated Flavonoids and other Polyphenols as Drugs: Nature as an Inspiration. Medicinal Research Reviews, 2014, 34, 223-279.	10.5	73
31	Sulfated Small Molecules Targeting <scp>EBV</scp> in <scp>B</scp> urkitt Lymphoma: From <i>In Silico</i> Screening to the Evidence of <i>In Vitro</i> Effect on Viral Episomal <scp>DNA</scp> . Chemical Biology and Drug Design, 2013, 81, 631-644.	3.2	9
32	In vitro antioxidant and antitumor evaluation of new sulfated antithrombotic small molecules. Thrombosis Research, 2012, 129, S179-S180.	1.7	1
33	Polysulfated Xanthones: Multipathway Development of a New Generation of Dual Anticoagulant/Antiplatelet Agents. Journal of Medicinal Chemistry, 2011, 54, 5373-5384.	6.4	48
34	Flavonoids with an Oligopolysulfated Moiety: A New Class of Anticoagulant Agents. Journal of Medicinal Chemistry, 2011, 54, 95-106.	6.4	50
35	Dual anticoagulant/antiplatelet persulfated small molecules. European Journal of Medicinal Chemistry, 2011, 46, 2347-2358.	5.5	39
36	Potential Orally-Active Heparin-Like Compounds: Synthesis and Anticoagulant Activity. , 0, , .		0

Potential Orally-Active Heparin-Like Compounds: Synthesis and Anticoagulant Activity. , 0, , . 36

#	Article	IF	CITATIONS
37	Persulfated Coumarin Glucosides: New Anticoagulant Hybrids . , 0, , .		0
38	Synthesis and Tumor Cell Growth Inhibitory Effects of New Flavonosides and Xanthonosides . , 0, , .		0
39	Inhibition of marine biofoulants settlement by new biomimetic coatings. Frontiers in Marine Science, 0, 5, .	2.5	0
40	Biologically-active sulfated steroids: synthesis and state-of-art. , 0, , .		0
41	Steroid derivatives: A promising class of bacterial efflux pump inhibitors?. , 0, , .		0
42	Lead optimization in the search for new antifouling compounds. , 0, , .		0