Silvija GradeÄak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9167521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Letters, 2005, 5, 2287-2291.	4.5	856
2	ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells. Advanced Materials, 2013, 25, 2790-2796.	11.1	251
3	Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells. Nano Letters, 2013, 13, 233-239.	4.5	193
4	The dual role of coherent twin boundaries in hydrogen embrittlement. Nature Communications, 2015, 6, 6164.	5.8	173
5	Visiblyâ€Transparent Organic Solar Cells on Flexible Substrates with Allâ€Graphene Electrodes. Advanced Energy Materials, 2016, 6, 1600847.	10.2	138
6	Diffusion-Mediated Synthesis of MoS ₂ /WS ₂ Lateral Heterostructures. Nano Letters, 2016, 16, 5129-5134.	4.5	129
7	Direct Correlation between Structural and Optical Properties of Illâ^'V Nitride Nanowire Heterostructures with Nanoscale Resolution. Nano Letters, 2009, 9, 3940-3944.	4.5	91
8	Pressure-induced phase transformations during femtosecond-laser doping of silicon. Journal of Applied Physics, 2011, 110, .	1.1	79
9	Impacts of Ion Segregation on Local Optical Properties in Mixed Halide Perovskite Films. Nano Letters, 2016, 16, 1485-1490.	4.5	79
10	Heterostructures and superlattices in one-dimensional nanoscale semiconductors. Journal of Materials Chemistry, 2009, 19, 5683.	6.7	68
11	Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering. Advanced Energy Materials, 2016, 6, 1600848.	10.2	66
12	Dimensional Tailoring of Hydrothermally Grown Zinc Oxide Nanowire Arrays. Nano Letters, 2016, 16, 753-759.	4.5	66
13	The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond laser irradiation. Journal of Applied Physics, 2012, 112, .	1.1	59
14	Supersaturating silicon with transition metals by ion implantation and pulsed laser melting. Journal of Applied Physics, 2013, 114, .	1.1	59
15	Nanoscale Optical Properties of Indium Gallium Nitride/Gallium Nitride Nanodisk-in-Rod Heterostructures. ACS Nano, 2015, 9, 2868-2875.	7.3	47
16	Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725. Nature Communications, 2018, 9, 3386.	5.8	47
17	Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing. Journal of Applied Physics, 2015, 118, .	1.1	45
18	Revisiting the "In-clustering―question in InGaN through the use of aberration-corrected electron microscopy below the knock-on threshold. Applied Physics Letters, 2013, 102, .	1.5	43

Silvija GradeÄak

#	Article	IF	CITATIONS
19	The effects of a thin film dopant precursor on the structure and properties of femtosecond-laser irradiated silicon. Applied Physics A: Materials Science and Processing, 2011, 105, 795-800.	1.1	36
20	Studying femtosecond-laser hyperdoping by controlling surface morphology. Journal of Applied Physics, 2012, 111, 093511.	1.1	35
21	High-Electron-Mobility Transistors Based on InAlN/GaN Nanoribbons. IEEE Electron Device Letters, 2011, 32, 1680-1682.	2.2	34
22	Minority Carrier Transport in Lead Sulfide Quantum Dot Photovoltaics. Nano Letters, 2017, 17, 6221-6227.	4.5	33
23	Light Management in Organic Photovoltaics Processed in Ambient Conditions Using ZnO Nanowire and Antireflection Layer with Nanocone Array. Small, 2019, 15, e1900508.	5.2	31
24	Control of zinc oxide nanowire array properties with electron-beam lithography templating for photovoltaic applications. Nanotechnology, 2015, 26, 075303.	1.3	30
25	Exciton-phonon coupling in individual GaAs nanowires studied using resonant Raman spectroscopy. Physical Review B, 2009, 80, .	1.1	29
26	The interplay of structural and optical properties in individual ZnO nanostructures. Nanoscale, 2012, 4, 1455.	2.8	27
27	Improving dopant incorporation during femtosecond-laser doping of Si with a Se thin-film dopant precursor. Applied Physics A: Materials Science and Processing, 2014, 114, 1009-1016.	1.1	27
28	Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles. Scientific Reports, 2016, 6, 19168.	1.6	27
29	Impact of Al ₂ O ₃ Passivation on AlGaN/GaN Nanoribbon High-Electron-Mobility Transistors. IEEE Transactions on Electron Devices, 2016, 63, 318-325.	1.6	26
30	Tunable Optical Properties of Thin Films Controlled by the Interface Twist Angle. Nano Letters, 2021, 21, 2832-2839.	4.5	26
31	Two-Dimensional MoxW1â^'xS2 Graded Alloys: Growth and Optical Properties. Scientific Reports, 2018, 8, 12889.	1.6	24
32	Nanoscale Modification of WS ₂ Trion Emission by Its Local Electromagnetic Environment. Nano Letters, 2021, 21, 10178-10185.	4.5	23
33	A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System. ACS Applied Materials & Interfaces, 2016, 8, 22664-22670.	4.0	22
34	Nanopores in 2D MoS ₂ : Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Interfaces, 2019, 11, 26228-26234.	4.0	22
35	Dimension- and Surface-Tailored ZnO Nanowires Enhance Charge Collection in Quantum Dot Photovoltaic Devices. ACS Applied Energy Materials, 2018, 1, 1815-1822.	2.5	21
36	Dry Transfer of van der Waals Crystals to Noble Metal Surfaces To Enable Characterization of Buried Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 38218-38225.	4.0	20

Silvija GradeÄak

#	Article	IF	CITATIONS
37	Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer. ACS Applied Materials & Interfaces, 2016, 8, 8511-8519.	4.0	18
38	Visualizing Nonradiative Mobile Defects in Organic–Inorganic Perovskite Materials. Small Methods, 2019, 3, 1900110.	4.6	17
39	Morphological stability during solidification of silicon incorporating metallic impurities. Journal of Applied Physics, 2014, 115, 163516.	1.1	15
40	Depth-resolved cathodoluminescence spectroscopy of silicon supersaturated with sulfur. Applied Physics Letters, 2013, 102, .	1.5	14
41	Correlation of doping, structure, and carrier dynamics in a single GaN nanorod. Applied Physics Letters, 2013, 102, .	1.5	12
42	Direct optical-structure correlation in atomically thin dichalcogenides and heterostructures. Nano Research, 2020, 13, 1363-1368.	5.8	12
43	Correlating stress generation and sheet resistance in InAlN/GaN nanoribbon high electron mobility transistors. Applied Physics Letters, 2012, 101, 113101.	1.5	11
44	Selenium Segregation in Femtosecond-Laser Hyperdoped Silicon Revealed by Electron Tomography. Microscopy and Microanalysis, 2013, 19, 716-725.	0.2	10
45	Light-Emitting V-Pits: An Alternative Approach toward Luminescent Indium-Rich InGaN Quantum Dots. ACS Photonics, 2021, 8, 2853-2860.	3.2	10
46	Mapping of Strain Fields in GaAs/GaAsP Core–Shell Nanowires with Nanometer Resolution. Nano Letters, 2015, 15, 7873-7879.	4.5	9
47	Measuring Grain Boundary Character Distributions in Ni-Base Alloy 725 Using High-Energy Diffraction Microscopy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 354-361.	1.1	9
48	Towards rapid nanoscale measurement of strain in III-nitride heterostructures. Applied Physics Letters, 2013, 103, 231904.	1.5	7
49	Effects of Voltage Biasing on Current Extraction in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701378.	10.2	7
50	Unlocking the origin of compositional fluctuations in InGaN light emitting diodes. Physical Review Materials, 2021, 5, .	0.9	7
51	Room Temperature Sensing Achieved by GaAs Nanowires and oCVD Polymer Coating. Macromolecular Rapid Communications, 2017, 38, 1700055.	2.0	5
52	ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells (Adv. Mater.) Tj ETQq0 0 0	rgBT /Overloo 11.1	ck 10 Tf 50 1

53	Nanowire-Based Bulk Heterojunction Solar Cells. Semiconductors and Semimetals, 2018, , 479-527.	0.4	0	