Hyoung Jin Choi

List of Publications by Citations

Source: https://exaly.com/author-pdf/916684/hyoung-jin-choi-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

618 papers

15,953 citations

61 h-index

93 g-index

646 ext. papers

17,408 ext. citations

avg, IF

7.17 L-index

#	Paper	IF	Citations
618	Magnetorheology: materials and application. <i>Soft Matter</i> , 2010 , 6, 5246	3.6	371
617	Electrorheology of polymers and nanocomposites. Soft Matter, 2009, 5, 1562	3.6	269
616	Synthesis and Dispersion Characteristics of Multi-Walled Carbon Nanotube Composites with Poly(methyl methacrylate) Prepared by In-Situ Bulk Polymerization. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 1070-1073	4.8	255
615	Shear stress analysis of a semiconducting polymer based electrorheological fluid system. <i>Polymer</i> , 2005 , 46, 11484-11488	3.9	218
614	Nanofibrous Membranes Prepared by Multiwalled Carbon Nanotube/Poly(methyl methacrylate) Composites. <i>Macromolecules</i> , 2004 , 37, 9899-9902	5.5	216
613	Synthesis and electrorheological properties of polyaniline-Na+-montmorillonite suspensions. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 450-452	4.8	191
612	Electrorheological fluids: smart soft matter and characteristics. <i>Soft Matter</i> , 2012 , 8, 11961	3.6	188
611	Synthesis and Rheology of Intercalated Polystyrene/Na+-Montmorillonite Nanocomposites. <i>Macromolecular Rapid Communications</i> , 2002 , 23, 191-195	4.8	173
610	Synthesis and electrical properties of polymer composites with polyaniline nanoparticles. <i>Materials Science and Engineering C</i> , 2004 , 24, 15-18	8.3	169
609	Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology. <i>Chemical Communications</i> , 2010 , 46, 5596-8	5.8	165
608	Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High Phase Formation in Poly(vinylidene fluoride). <i>Journal of</i> Physical Chemistry C, 2013 , 117, 11791-11799	3.8	156
607	Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 351, 46-51	5.1	139
606	Carbon Nanotube-Adsorbed Polystyrene and Poly(methyl methacrylate) Microspheres. <i>Chemistry of Materials</i> , 2005 , 17, 4034-4037	9.6	138
605	Physical characteristics of magnetorheological suspensions and their applications. <i>Journal of Industrial and Engineering Chemistry</i> , 2013 , 19, 394-406	6.3	137
604	Graphene oxide coated coreEhell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6916		136
603	Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 3487-95	9.5	135
602	Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics. <i>Langmuir</i> , 2012 , 28, 7055-62	4	132

(2001-2007)

601	Emulsion polymerized polyaniline synthesized with dodecylbenzene-sulfonic acid and its electrorheological characteristics: Temperature effect. <i>Polymer</i> , 2007 , 48, 6622-6631	3.9	132	
600	Preparation and Rheological Characteristics of Solvent-Cast Poly(ethylene oxide)/Montmorillonite Nanocomposites. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 320-325	4.8	127	
599	Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. <i>Journal of Applied Polymer Science</i> , 2013 , 127, 4833-4839	2.9	125	
598	Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica. Journal of Magnetism and Magnetic Materials, 2004 , 282, 170-173	2.8	125	
597	Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 21, 741-745	6.3	124	
596	Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology. <i>Langmuir</i> , 2010 , 26, 12849-54	4	116	
595	Preparation and Interaction Characteristics of Organically Modified Montmorillonite Nanocomposite with Miscible Polymer Blend of Poly(Ethylene Oxide) and Poly(Methyl Methacrylate). <i>Chemistry of Materials</i> , 2002 , 14, 1989-1994	9.6	115	
594	Pickering-emulsion-polymerized polystyrene/Fe2O3 composite particles and their magnetoresponsive characteristics. <i>Langmuir</i> , 2013 , 29, 4959-65	4	110	
593	Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology. <i>Composite Structures</i> , 2016 , 136, 106-112	5.3	106	
592	Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. <i>Journal of Applied Physics</i> , 2005 , 97, 10Q912	2.5	106	
591	Synthesis of corellhell structured PS/Fe3O4 microbeads and their magnetorheology. <i>Polymer</i> , 2009 , 50, 2290-2293	3.9	105	
590	Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. <i>ACS Applied Materials & Distriction</i> , 2, 54-60	9.5	104	
589	Electrorheology of graphene oxide. ACS Applied Materials & amp; Interfaces, 2012, 4, 2267-72	9.5	100	
588	Preparation and rheological characterization of intercalated polystyrene/organophilic montmorillonite nanocomposite. <i>Journal of Applied Polymer Science</i> , 2003 , 87, 2106-2112	2.9	93	
587	Smart monodisperse polystyrene/polyaniline core\texts\text{hell structured hybrid microspheres fabricated} by a controlled releasing technique and their electro-responsive characteristics. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17396		91	
586	Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes. <i>Colloid and Polymer Science</i> , 2007 , 285, 593-598	2.4	89	
585	Fabrication of semiconducting graphene oxide/polyaniline composite particles and their electrorheological response under an applied electric field. <i>Carbon</i> , 2012 , 50, 290-296	10.4	82	
584	Electrorheological characteristics of phosphate cellulose-based suspensions. <i>Polymer</i> , 2001 , 42, 5005-5	03.2	81	

583	Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology. <i>Materials Letters</i> , 2008 , 62, 2897-2899	3.3	80
582	Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. <i>Polymer Bulletin</i> , 2009 , 63, 125-134	2.4	79
581	Fast and facile fabrication of a graphene oxide/titania nanocomposite and its electro-responsive characteristics. <i>Chemical Communications</i> , 2011 , 47, 12286-8	5.8	78
580	Silica nanoparticle decorated polyaniline nanofiber and its electrorheological response. <i>Soft Matter</i> , 2011 , 7, 2782	3.6	78
579	Characteristics and applications of magnetized water as a green technology. <i>Journal of Cleaner Production</i> , 2017 , 161, 908-921	10.3	76
578	Magnetic carbonyl iron nanoparticle based magnetorheological suspension and its characteristics. <i>Materials Letters</i> , 2009 , 63, 1350-1352	3.3	75
577	Electrorheology of Multiwalled Carbon Nanotube/Poly(methyl methacrylate) Nanocomposites. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1563-1566	4.8	74
576	Turbulent drag reduction and degradation of DNA. <i>Physical Review Letters</i> , 2002 , 89, 088302	7.4	73
575	Synthesis and electrorheological characteristics of SANtlay composite suspensions. <i>Polymer</i> , 2000 , 41, 1229-1231	3.9	72
574	Preparation of polyaniline coated poly(methyl methacrylate) microsphere by graft polymerization and its electrorheology. <i>Polymer</i> , 2005 , 46, 1317-1321	3.9	71
573	CoreBhell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics. <i>Colloid and Polymer Science</i> , 2011 , 289, 1295-1298	2.4	70
572	Viscoelasticity of biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(ethylene oxide). <i>Polymer</i> , 2001 , 42, 5737-5742	3.9	70
571	Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer. <i>Colloid and Polymer Science</i> , 2012 , 290, 1115-1122	2.4	69
57°	Solidlike transition of melt-intercalated biodegradable polymer/clay nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 2052-2061	2.6	67
569	SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@D NH (CH2)4SO3H): Synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines. <i>Polyhedron</i> , 2019 , 162, 129-141	2.7	66
568	Novel architecture of carbon nanotube decorated poly(methyl methacrylate) microbead vapour sensors assembled by spray layer by layer. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4142		66
567	Magnetic carbonyl iron suspension with organoclay additive and its magnetorheological properties. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 377, 103-109	5.1	66
566	PREPARATION AND ELECTRO-THERMOCONDUCTIVE CHARACTERISTICS OF MAGNETORHEOLOGICAL SUSPENSIONS. <i>International Journal of Modern Physics B</i> , 2008 , 22, 5041-5064	1.1	66

565	Recent development of electro-responsive smart electrorheological fluids. Soft Matter, 2019, 15, 3473-	·3 4 86	65
564	Pickering emulsion-fabricated polystyrene@raphene oxide microspheres and their electrorheology. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7541	7.1	65
563	Magnetorheological characterization of carbonyl iron-organoclay suspensions. <i>IEEE Transactions on Magnetics</i> , 2005 , 41, 3745-3747	2	65
562	Magnetorheology of carbonyl-iron Suspensions with submicron-sized filler. <i>IEEE Transactions on Magnetics</i> , 2004 , 40, 3033-3035	2	63
561	Polymer blend/organoclay nanocomposite with poly(ethylene oxide) and poly(methyl methacrylate). <i>European Polymer Journal</i> , 2005 , 41, 679-685	5.2	63
560	Synthesis and electrorheological characterization of emulsion-polymerized dodecylbenzenesulfonic acid doped polyaniline-based suspensions. <i>Colloid and Polymer Science</i> , 2000 , 278, 894-898	2.4	63
559	MagnetiteBolypyrrole coreBhell structured microspheres and their dual stimuli-response under electric and magnetic fields. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3150-3158	7.1	61
558	Magnetorheology of CoreBhell Structured Carbonyl Iron/Polystyrene Foam Microparticles Suspension with Enhanced Stability. <i>Macromolecules</i> , 2015 , 48, 7311-7319	5.5	61
557	SYNTHESIS AND ELECTRORHEOLOGICAL CHARACTERIZATION OF POLYANILINE AND NA+-MONTMORILLONITE CLAY NANOCOMPOSITE. <i>International Journal of Modern Physics B</i> , 2001 , 15, 657-664	1.1	61
556	Searching for a Stable High-Performance Magnetorheological Suspension. <i>Advanced Materials</i> , 2018 , 30, e1704769	24	60
555	Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/poly(vinyl acetate) blends. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 3618-362	26 ^{2.9}	60
554	Drag-reduction effectiveness of xanthan gum in a rotating disk apparatus. <i>Carbohydrate Polymers</i> , 2001 , 45, 61-68	10.3	60
553	Rheology and Physical Characteristics of Synthetic Biodegradable Aliphatic Polymer Blends Dispersed with MWNTs. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 320-328	3.9	59
552	Synthesis and electrorheology of camphorsulfonic acid doped polyaniline suspensions. <i>Colloid and Polymer Science</i> , 2001 , 279, 823-827	2.4	59
551	Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields. <i>EXPRESS Polymer Letters</i> , 2015 , 9, 736-743	3.4	58
550	Mechanical degradation of dilute polymer solutions under turbulent flow. <i>Polymer</i> , 2000 , 41, 7611-761.	53.9	58
549	Microencapsulated polyaniline particles for electrorheological materials. <i>Journal of Materials Science Letters</i> , 2000 , 19, 533-535		58
548	Effect of Magnetic Nanoparticle Additive on Characteristics of Magnetorheological Fluid. <i>IEEE Transactions on Magnetics</i> , 2009 , 45, 4045-4048	2	57

547	Sonochemical preparation of polymer nanocomposites. <i>Molecules</i> , 2009 , 14, 2095-110	4.8	57
546	Effect of polymerization temperature on polyaniline based electrorheological suspensions. <i>Colloid and Polymer Science</i> , 1999 , 277, 73-76	2.4	57
545	Graphene oxide based smart fluids. <i>Soft Matter</i> , 2014 , 10, 6601-8	3.6	54
544	Modified silane-coated carbonyl iron/natural rubber composite elastomer and its magnetorheological performance. <i>Composite Structures</i> , 2017 , 160, 1020-1026	5.3	53
543	Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field. <i>Colloid and Polymer Science</i> , 2011 , 289, 381-386	2.4	52
542	Two-layer coating with polymer and carbon nanotube on magnetic carbonyl iron particle and its magnetorheology. <i>Colloid and Polymer Science</i> , 2010 , 288, 359-363	2.4	52
541	Phosphorylation of potato starch and its electrorheological suspension. <i>Biomacromolecules</i> , 2005 , 6, 2182-8	6.9	52
540	Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites. <i>Carbohydrate Polymers</i> , 2014 , 102, 537-42	10.3	51
539	The role of acidic m-cresol in polyaniline doped by camphorsulfonic acid. <i>Polymer</i> , 2009 , 50, 4372-4377	3.9	51
538	Core-shell structured Fe3O4@SiO2 nanoparticles fabricated by solgel method and their magnetorheology. <i>Colloid and Polymer Science</i> , 2016 , 294, 647-655	2.4	49
537	Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. <i>Chemical Communications</i> , 2012 , 48, 136-8	5.8	49
536	Organic/inorganic hybrid of polyaniline/BaTiO3 composites and their electrorheological and dielectric characteristics. <i>Journal of Applied Polymer Science</i> , 2007 , 105, 1853-1860	2.9	49
535	Rheological study on poly-D(-)(3-hydroxybutyrate) and its blends with poly(ethylene oxide). <i>Polymer Engineering and Science</i> , 1995 , 35, 1636-1642	2.3	49
534	CoreBhell-structured cross-linked poly(glycidyl methacrylate)-coated carbonyl iron microspheres and their magnetorheology. <i>Journal of Materials Science</i> , 2014 , 49, 1345-1352	4.3	48
533	Fabrication of multiwalled carbon nanotube-wrapped magnetic carbonyl iron microspheres and their magnetorheology. <i>Colloid and Polymer Science</i> , 2010 , 288, 79-84	2.4	48
532	Magnetorheological carbonyl iron particles doubly wrapped with polymer and carbon nanotube. <i>Journal of Applied Physics</i> , 2009 , 105, 07E703	2.5	47
531	Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 403, 133-138	5.1	46
530	Core-shell structured monodisperse poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) coated polystyrene microspheres and their electrorheological response. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 881-6	4.8	46

(2013-1998)

529	Drag reduction characteristics of polysaccharide xanthan gum. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 419-422	4.8	46	
528	Effect of a hard magnetic particle additive on rheological characteristics of microspherical carbonyl iron-based magnetorheological fluid. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 506, 812-820	5.1	46	
5 2 7	Enhanced magnetorheology of soft magnetic carbonyl iron suspension with hard magnetic Fe2O3 nanoparticle additive. <i>Colloid and Polymer Science</i> , 2015 , 293, 641-647	2.4	44	
526	Celebrating Soft Matter's 10th anniversary: stimuli-responsive Pickering emulsion polymerized smart fluids. <i>Soft Matter</i> , 2015 , 11, 646-54	3.6	44	
525	A simplified model for analyzing the flow behavior of electrorheological fluids containing silica nanoparticle-decorated polyaniline nanofibers. <i>Soft Matter</i> , 2012 , 8, 4659	3.6	44	
524	An investigation of melt rheology and thermal stability of poly(lactic acid)/ poly(butylene succinate) nanocomposites. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 2837-2847	2.9	44	
523	Noncovalent self-assembly of carbon nanotube wrapped carbonyl iron particles and their magnetorheology. <i>Journal of Applied Physics</i> , 2008 , 103, 07A301	2.5	44	
522	Effects of shear rate and particle concentration on rheological properties of magnetic particle suspensions. <i>Journal of Materials Science</i> , 2000 , 35, 889-894	4.3	44	
521	Polyaniline nanoparticle-carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. <i>Nanotechnology</i> , 2010 , 21, 255501	3.4	43	
520	Preparation and electrophoretic response of poly(methyl methacrylate-co-methacrylic acid) coated TiO2 nanoparticles for electronic paper application. <i>Current Applied Physics</i> , 2007 , 7, 349-351	2.6	43	
519	A high-precision rotating disk apparatus for drag reduction characterization. <i>Polymer Testing</i> , 2000 , 20, 43-48	4.5	43	
518	Facile fabrication of Pickering emulsion polymerized polystyrene/laponite composite nanoparticles and their electrorheology. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 108-14	9.3	42	
517	Effect of Medium Oil on Magnetorheology of Soft Carbonyl Iron Particles. <i>IEEE Transactions on Magnetics</i> , 2012 , 48, 3442-3445	2	42	
516	Electrorheologically intelligent polyaniline and its composites. <i>Macromolecular Research</i> , 2010 , 18, 99-1	12 9	42	
515	Emulsion Polymerized Polystyrene/Montmorillonite Nanocomposite and its Viscoelastic Characteristics. <i>Journal of Macromolecular Science - Physics</i> , 2007 , 46, 341-354	1.4	42	
514	Carbonyl iron particles dispersed in a polymer solution and their rheological characteristics under applied magnetic field. <i>Journal of Industrial and Engineering Chemistry</i> , 2012 , 18, 664-667	6.3	41	
513	An experimental study on enhanced oil recovery utilizing nanoparticle ferrofluid through the application of a magnetic field. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 58, 319-327	6.3	40	
512	Facile and fast synthesis of polyaniline-coated poly(glycidyl methacrylate) core-shell microspheres and their electro-responsive characteristics. <i>Journal of Colloid and Interface Science</i> , 2013 , 402, 100-6	9.3	40	

511	Fabrication of spherical Fe3O4 particles with a solvothermal method and their magnetorheological characteristics. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 29, 129-133	6.3	40
510	Silica nanoparticle decorated conducting polyaniline fibers and their electrorheology. <i>Materials Letters</i> , 2010 , 64, 154-156	3.3	40
509	Dispersion-Polymerized Carbon Nanotube/Poly(methyl methacrylate) Composite Particles and their Electrorheological Characteristics. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 514-519	2.6	40
508	Polyaniline/Fe composite nanofiber added softmagnetic carbonyl iron microsphere suspension and its magnetorheology. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1861-1868	7.1	39
507	Enhanced fracture toughness and mechanical properties of epoxy resin with rice husk-based nano-silica. <i>Polymer Science - Series A</i> , 2017 , 59, 437-444	1.2	38
506	Viscoelasticity and relaxation characteristics of polystyrene/clay nanocomposite. <i>Journal of Materials Science</i> , 2003 , 38, 1849-1852	4.3	38
505	Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics. <i>Polymer Testing</i> , 2017 , 61, 150-161	4.5	37
504	Electroactive response of mesoporous silica and its nanocomposites with conducting polymers. <i>Composites Science and Technology</i> , 2009 , 69, 2088-2092	8.6	37
503	EDNA Induced Turbulent Drag Reduction and Its Characteristics. <i>Macromolecules</i> , 2003 , 36, 5348-5354	5.5	37
502	Viscoelastic characterization of semiconducting dodecylbenzenesulfonic acid doped polyaniline electrorheological suspensions. <i>Journal of Applied Polymer Science</i> , 2001 , 79, 108-114	2.9	37
501	Carbon nanotube coated magnetic carbonyl iron microspheres prepared by solvent casting method and their magneto-responsive characteristics. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 412, 47-56	5.1	36
500	Effect of Clay on Thermal, Mechanical and Gas Barrier Properties of Biodegradable Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Nanocomposites. <i>International Polymer Processing</i> , 2010 , 25, 5-14	1	36
499	Synthesis and electrorheological response of nano-sized laponite stabilized poly(methyl methacrylate) spheres. <i>Colloid and Polymer Science</i> , 2009 , 287, 745-749	2.4	36
498	Rheological analysis of magnetite added carbonyl iron based magnetorheological fluid. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 444, 161-167	2.8	35
497	Stimuli-Responsive Polymers and Colloids under Electric and Magnetic Fields. <i>Polymers</i> , 2014 , 6, 2803-2	1841. 8	35
496	Synthesis and characteristics of microcapsules containing electrophoretic particle suspensions. <i>Colloid and Polymer Science</i> , 2006 , 284, 813-816	2.4	35
495	Electrorheological characterization of polyaniline-coated poly(methyl methacrylate) suspensions. <i>Colloid and Polymer Science</i> , 2002 , 280, 1062-1066	2.4	35
494	Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation. <i>Polymer</i> , 2011 , 52, 5695-5698	3.9	34

(2016-1999)

493	Universal drag reduction characteristics of polyisobutylene in a rotating disk apparatus. <i>Polymer</i> , 1999 , 40, 4527-4530	3.9	34	
492	Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly(ionic liquid) and their enhanced electrorheological responses. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 69, 106-115	6.3	34	
491	Synthesis of semiconducting poly(diphenylamine) particles and analysis of their electrorheological properties. <i>Polymer</i> , 2017 , 119, 40-49	3.9	33	
490	Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response. <i>Langmuir</i> , 2014 , 30, 1729-34	4	33	
489	Rectangular-Shaped Polyaniline Tubes Covered with Nanorods and their Electrorheology. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2300-2307	2.6	33	
488	Synthesis and characterization of soluble polypyrrole and polypyrrole/organoclay nanocomposites. <i>Journal of Materials Science Letters</i> , 2003 , 22, 1299-1302		33	
487	Preparation and Characterization of Phosphate Cellulose-Based Electrorheological Fluids. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 521-526	2.6	33	
486	Effect of micro/nano white bamboo fibrils on physical characteristics of epoxy resin reinforced composites. <i>Cellulose</i> , 2017 , 24, 5475-5486	5.5	32	
485	Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology. <i>RSC Advances</i> , 2016 , 6, 56495-56502	3.7	31	
484	Facile fabrication of self-assembled PMMA/graphene oxide composite particles and their electroresponsive properties. <i>Colloid and Polymer Science</i> , 2013 , 291, 955-962	2.4	31	
483	Well controlled core/shell type polymeric microspheres coated with conducting polyaniline: fabrication and electrorheology. <i>RSC Advances</i> , 2011 , 1, 1026	3.7	31	
482	Ordering Behavior of Layered Silicate Nanocomposites with a Cylindrical Triblock Copolymer. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 444-455	2.6	31	
481	Preparation and Characterization of Poly(Methyl Methacrylate) Coated TiO2 Nanoparticles. <i>Journal of Macromolecular Science - Physics</i> , 2006 , 45, 53-60	1.4	31	
480	Synthesis and characterization of TiO2/polystyrene hybrid nanoparticles via admicellar polymerization. <i>Journal of Materials Science</i> , 2005 , 40, 3021-3024	4.3	31	
479	Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. <i>Chinese Journal of Chemical Engineering</i> , 2018 , 26, 465-476	3.2	30	
478	Effect of CoFe2O4 nanoparticles on a carbonyl iron based magnetorheological suspension. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 537, 102-108	5.1	30	
477	Polymer coated magnetite-based magnetorheological fluid and its potential clean procedure applications to oil production. <i>Journal of Cleaner Production</i> , 2018 , 171, 45-56	10.3	30	
476	Static yield stress of a magnetorheological fluid containing Pickering emulsion polymerized Fe2O3/polystyrene composite particles. <i>Journal of Colloid and Interface Science</i> , 2016 , 463, 272-8	9.3	30	

475	Urchin-like polyaniline microspheres fabricated from self-assembly of polyaniline nanowires and their electro-responsive characteristics. <i>Chemical Engineering Journal</i> , 2014 , 235, 186-190	14.7	30
474	Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. <i>Colloid and Polymer Science</i> , 2013 , 291, 1781-1786	2.4	30
473	Fabrication of semiconducting polyaniline/nano-silica nanocomposite particles and their enhanced electrorheological and dielectric characteristics. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 381, 17-22	5.1	30
472	Polymeric nanobead coated carbonyl iron particles and their magnetic property. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2007 , 204, 4190-4193	1.6	30
471	Intercalated polypropylene/clay nanocomposite and its physical characteristics. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 1375-1378	3.9	30
470	Linear viscoelasticity of semiconducting polyaniline based electrorheological suspensions. <i>Journal of Materials Science</i> , 2004 , 39, 1377-1382	4.3	30
469	Electrorheological characterization of semiconducting polyaniline suspension. <i>Polymer Engineering and Science</i> , 1999 , 39, 493-499	2.3	30
468	Amphicharge-Storable Pyropolymers Containing Multitiered Nanopores. <i>Advanced Energy Materials</i> , 2017 , 7, 1700629	21.8	29
467	Magnetorheological characteristics of carbonyl iron microparticles with different shapes 2019 , 31, 41-4	1 7	29
466	Magnetic Particle Filled Elastomeric Hybrid Composites and Their Magnetorheological Response. <i>Materials</i> , 2018 , 11,	3.5	29
465	Optically transparent electrorheological fluid with urea-modified silica nanoparticles and its haptic display application. <i>Journal of Colloid and Interface Science</i> , 2013 , 404, 56-61	9.3	29
464	Synthesized palygorskite/polyaniline nanocomposite particles by oxidative polymerization and their electrorheology. <i>Applied Clay Science</i> , 2015 , 107, 165-172	5.2	29
463	Synthetic aliphatic biodegradable poly(butylene succinate)/clay nanocomposite foams with high blowing ratio and their physical characteristics. <i>Polymer Engineering and Science</i> , 2011 , 51, 1316-1324	2.3	29
462	COLE-COLE ANALYSIS ON DIELECTRIC SPECTRA OF ELECTRORHEOLOGICAL SUSPENSIONS. International Journal of Modern Physics B, 2007 , 21, 4974-4980	1.1	29
461	Preparation and Rheological Characteristics of Ethylene-Vinyl Acetate Copolymer/Organoclay Nanocomposites. <i>Journal of Macromolecular Science - Physics</i> , 2007 , 46, 261-273	1.4	29
460	Polyaniline microsphere encapsulated by poly(methyl methacrylate) and investigation of its electrorheological properties. <i>Colloid and Polymer Science</i> , 2003 , 282, 198-202	2.4	29
459	Micron-Size White Bamboo Fibril-Based Silane Cellulose Aerogel: Fabrication and Oil Absorbent Characteristics. <i>Materials</i> , 2019 , 12,	3.5	28
458	Preparation and physical characteristics of epoxy resin/ bacterial cellulose biocomposites. <i>Polymer Bulletin</i> , 2018 , 75, 2607-2625	2.4	28

(2012-2016)

457	Eco-friendly mass production of poly(p-phenylenediamine)/graphene oxide nanoplatelet composites and their electrorheological characteristics. <i>Composites Science and Technology</i> , 2016 , 122, 36-41	8.6	28	
456	Enhanced magnetorheological performance of carbonyl iron/natural rubber composite elastomer with gamma-ferrite additive. <i>Colloid and Polymer Science</i> , 2018 , 296, 1609-1613	2.4	28	
455	Silica-coated carbonyl iron microsphere based magnetorheological fluid and its damping force characteristics. <i>Smart Materials and Structures</i> , 2013 , 22, 065022	3.4	28	
454	Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics. <i>Materials</i> , 2014 , 7, 7460-7471	3.5	28	
453	Electrorheological activity generation by graphene oxide coating on low-dielectric silica particles. <i>RSC Advances</i> , 2014 , 4, 62644-62650	3.7	28	
452	CoreBhell structured graphene oxide-adsorbed anisotropic poly(methyl methacrylate) microparticles and their electrorheology. <i>RSC Advances</i> , 2013 , 3, 11723	3.7	28	
451	Rheology of organoclay suspension. <i>Colloid and Polymer Science</i> , 2011 , 289, 1119-1125	2.4	28	
450	Effects of surface treatment on magnetic carbonyl iron/polyaniline microspheres and their magnetorheological study. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 531, 48-55	5.1	28	
449	Carbonyl iron suspension with halloysite additive and its magnetorheology. <i>Applied Clay Science</i> , 2013 , 80-81, 366-371	5.2	27	
448	Pickering emulsion polymerization of corelhell-structured polyaniline@SiO2 nanoparticles and their electrorheological response. <i>Colloid and Polymer Science</i> , 2012 , 290, 855-860	2.4	27	
447	Electrorheology of a mesoporous silica having conducting polypyrrole inside expanded pores. <i>Microporous and Mesoporous Materials</i> , 2010 , 130, 338-343	5.3	27	
446	Characterization of drag reducing guar gum in a rotating disk flow. <i>Journal of Applied Polymer Science</i> , 2002 , 83, 2938-2944	2.9	27	
445	Miscibility of biodegradable synthetic aliphatic polyester and poly(epichlorohydrin) blends. <i>Polymer</i> , 1999 , 40, 6873-6876	3.9	27	
444	Microcrystalline cellulose added carbonyl iron suspension and its magnetorheology. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 514, 161-167	5.1	26	
443	High-Performance Magnetorheological Suspensions of Pickering-Emulsion-Polymerized Polystyrene/FeO Particles with Enhanced Stability. <i>Langmuir</i> , 2018 , 34, 2807-2814	4	26	
442	CoreShell structured poly(2-ethylaniline) coated crosslinked poly(methyl methacrylate) nanoparticles by graft polymerization and their electrorheology. <i>RSC Advances</i> , 2014 , 4, 28511	3.7	26	
441	Analysis of Gas Permeability Characteristics of Poly(Lactic Acid)/Poly(Butylene Succinate) Nanocomposites. <i>Journal of Nanomaterials</i> , 2012 , 2012, 1-11	3.2	26	
440	Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology. <i>Colloid and Polymer Science</i> , 2012 , 290, 1743-1748	2.4	26	

439	Fabrication of Carbonyl Iron Embedded Polycarbonate Composite Particles and Magnetorheological Characterization. <i>IEEE Transactions on Magnetics</i> , 2009 , 45, 2507-2510	2	26
438	Nano-Rheology of Single Unentangled Polymeric Lubricant Films. <i>Macromolecular Theory and Simulations</i> , 2008 , 17, 454-459	1.5	26
437	Universal yield stress function for biocompatible chitosan based-electrorheological fluid: Effect of particle concentration. <i>Polymer</i> , 2005 , 46, 12359-12365	3.9	26
436	Micro-fibril cellulose as a filler for glass fiber reinforced unsaturated polyester composites: Fabrication and mechanical characteristics. <i>Macromolecular Research</i> , 2018 , 26, 54-60	1.9	26
435	Facile Fabrication of Chemically Grafted Graphene Oxide Poly(glycidyl methacrylate) Composite Microspheres and Their Electrorheology. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 1415-1422	2.6	25
434	Synthetic Aliphatic Biodegradable Poly(Butylene Succinate)/MWNT Nanocomposite Foams and Their Physical Characteristics. <i>Journal of Macromolecular Science - Physics</i> , 2011 , 50, 1171-1184	1.4	25
433	Preparation and interaction characteristics of exfoliated ABS/organoclay nanocomposite. <i>Polymer Engineering and Science</i> , 2010 , 50, 504-512	2.3	25
432	Novel Magnetic Composite Particles of Carbonyl Iron Embedded in Polystyrene and Their Magnetorheological Characteristics. <i>IEEE Transactions on Magnetics</i> , 2008 , 44, 4533-4536	2	25
431	Multi-walled carbon nanotube/polystyrene composites prepared by in-situ bulk sonochemical polymerization. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 3400-3	1.3	25
430	Formation of Two-Dimensional Array of Multiwalled Carbon Nanotubes in Polystyrene/Poly(methyl methacrylate) Thin Film. <i>Macromolecules</i> , 2005 , 38, 10623-10626	5.5	25
429	Shear Stress and Dielectric Characteristics of Polyaniline/TiO2 Composite-Based Electrorheological Fluid. <i>Journal of Macromolecular Science - Physics</i> , 2006 , 45, 923-932	1.4	25
428	Effect of a reactive-type flame retardant on rheological and mechanical properties of PC/ABS blends. <i>Journal of Materials Science</i> , 2003 , 38, 1485-1491	4.3	25
427	MAGNETORHEOLOGICAL CHARACTERIZATION OF ORGANOCLAY ADDED CARBONYL-IRON SUSPENSIONS. <i>International Journal of Modern Physics B</i> , 2005 , 19, 1142-1148	1.1	25
426	Effects of acrylonitrile content on PC/ABS alloy systems with a flame retardant. <i>Journal of Applied Polymer Science</i> , 2000 , 75, 417-423	2.9	25
425	Simultaneous improvement of the fracture toughness and mechanical characteristics of amine-functionalized nano/micro glass fibril-reinforced epoxy resin. <i>Polymer Testing</i> , 2018 , 71, 200-208	4.5	25
424	Hydrothermal fabrication of octahedral-shaped Fe3O4 nanoparticles and their magnetorheological response. <i>Journal of Applied Physics</i> , 2015 , 117, 17E708	2.5	24
423	Recent progress in smart polymer composite particles in electric and magnetic fields. <i>Polymer International</i> , 2013 , 62, 147-151	3.3	24
422	Applications of Water-Soluble Polymers in Turbulent Drag Reduction. <i>Processes</i> , 2017 , 5, 24	2.9	24

(2003-2015)

421	Magnetorheology of corelinell typed dual-coated carbonyl iron particle fabricated by a solgel and self-assembly process. <i>Materials Research Bulletin</i> , 2015 , 69, 92-97	5.1	24	
420	Effect of polymerBurfactant interaction on its turbulent drag reduction. <i>Colloids and Surfaces A:</i> Physicochemical and Engineering Aspects, 2011 , 391, 125-129	5.1	24	
419	Atom transfer radical polymerized PMMA/magnetite nanocomposites and their magnetorheology. <i>Colloid and Polymer Science</i> , 2009 , 287, 501-504	2.4	24	
418	Polyhedral oligomeric silsesquioxane and polyethylene nanocomposites and their physical characteristics. <i>Journal of Industrial and Engineering Chemistry</i> , 2010 , 16, 189-192	6.3	24	
417	Effect of salt on turbulent drag reduction of xanthan gum. Carbohydrate Polymers, 2015, 121, 342-7	10.3	23	
416	Additive role of attapulgite nanoclay on carbonyl iron-based magnetorheological suspension. <i>Colloid and Polymer Science</i> , 2015 , 293, 89-95	2.4	23	
415	Cellulose-Based Smart Fluids under Applied Electric Fields. <i>Materials</i> , 2017 , 10,	3.5	23	
414	Enhancement of Interlaminar Fracture Toughness of Carbon Fiber/Epoxy Composites Using Silk Fibroin Electrospun Nanofibers. <i>Polymer-Plastics Technology and Engineering</i> , 2016 , 55, 1048-1056		23	
413	Synthesis of hollow magnetite nanoparticles via self-assembly and their magnetorheological properties. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 535, 16-23	5.1	23	
412	Pickering emulsion polymerized poly(3,4-ethylenedioxythiophene):poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polystyrene composite particles and their electric stimuli-response. <i>RSC Advances</i> , 2015 , 5, 72387-72393	3.7	22	
411	Electric Field-Responsive Mesoporous Suspensions: A Review. <i>Nanomaterials</i> , 2015 , 5, 2249-2267	5.4	22	
410	Carbon nanotube-coated silicated soft magnetic carbonyl iron microspheres and their magnetorheology. <i>Journal of Applied Physics</i> , 2012 , 111, 07B502	2.5	22	
409	Nano-sized Fe soft-magnetic particle and its magnetorheology. <i>Colloid and Polymer Science</i> , 2011 , 289, 79-83	2.4	22	
408	Fabrication and magnetorheological property of core/shell structured magnetic composite particle encapsulated with cross-linked poly(methyl methacrylate). <i>Materials Letters</i> , 2009 , 63, 2178-2180	3.3	22	
407	Polymer-coated magnetic carbonyl iron microparticles and their magnetorheological characteristics. <i>Korean Journal of Chemical Engineering</i> , 2010 , 27, 716-722	2.8	22	
406	Intercalated conducting polyanilinellay nanocomposites and their electrical characteristics. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 1383-1385	3.9	22	
405	Mechanical degradation of polyisobutylene under turbulent flow. <i>Colloid and Polymer Science</i> , 2002 , 280, 779-782	2.4	22	
404	Physical and electroresponsive characteristics of the intercalated styrene-acrylonitrile copolymer/clay nanocomposite under applied electric fields. <i>Journal of Applied Polymer Science</i> , 2003 , 89, 821-827	2.9	22	

403	Biodegradable aliphatic polyester-poly (epichlorohydrin) blend/organoclay nanocomposites; synthesis and rheological characterization. <i>Journal of Materials Science</i> , 2005 , 40, 3981-3985	4.3	22
402	Electrorheological Semi-Active Damper: Polyaniline Based ER System. <i>Journal of Intelligent Material Systems and Structures</i> , 2002 , 13, 509-513	2.3	22
401	Seeded swelling polymerized sea urchin-like corellhell typed polystyrene/polyaniline particles and their electric stimuli-response. <i>RSC Advances</i> , 2015 , 5, 81546-81553	3.7	21
400	Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields. <i>Journal of Colloid and Interface Science</i> , 2015 , 440, 9-15	9.3	21
399	Fabrication of self-assembled polyaniline tubes and their electrorheological characteristics. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 530, 227-234	5.1	21
398	Modeling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 457, 363-367	5.1	21
397	Polymeric colloidal magnetic composite microspheres and their magneto-responsive characteristics. <i>Macromolecular Research</i> , 2012 , 20, 1211-1218	1.9	21
396	Magnetic Carbonyl Iron Particle Dispersed in Viscoelastic Fluid and Its Magnetorheological Property. <i>IEEE Transactions on Magnetics</i> , 2011 , 47, 3173-3176	2	21
395	Pentacene thin-film transistor with poly(methyl methacrylate-co-methacrylic acid)/TiO2 nanocomposite gate insulator. <i>Thin Solid Films</i> , 2009 , 518, 588-590	2.2	21
394	Polymer turbulent drag reduction near the theta point. <i>Europhysics Letters</i> , 2007 , 80, 58003	1.6	21
393	Comment on P reparation and Enhanced Electrorheological Activity of TiO2 Doped with Chromium Ion (In the Chromium Ion) (In the Chro	9.6	21
392	Synthesis and electrorheology of aniline/pyrrole copolymer. <i>Journal of Materials Science</i> , 2004 , 39, 1883	8- ₄ 1. <u>8</u> 85	21
391	Turbulent Drag Reduction Efficiency and Mechanical Degradation of Poly(Acrylamide). <i>Journal of Macromolecular Science - Physics</i> , 2004 , 43, 507-518	1.4	21
390	Synthesis and Electrorheology of Semiconducting Poly(naphthalene quinone) Radical Particles. <i>Macromolecular Chemistry and Physics</i> , 2002 , 203, 1135	2.6	21
389	Electrorheology of chitosan polysaccharide suspensions in soybean oil. <i>Colloid and Polymer Science</i> , 2003 , 281, 1196-1200	2.4	21
388	Polyaniline and its modification for electroresponsive material under applied electric fields. <i>Polymers for Advanced Technologies</i> , 2005 , 16, 352-356	3.2	21
387	CoreShell structured mesoporous magnetic nanoparticles and their magnetorheological response. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 524, 79-86	5.1	20
386	CoreBhell structured semiconducting poly(diphenylamine)-coated polystyrene microspheres and their electrorheology. <i>Polymer</i> , 2017 , 131, 120-131	3.9	20

385	Graphene oxide/poly(2-methylaniline) composite particle suspension and its electro-response. <i>Materials Chemistry and Physics</i> , 2015 , 153, 443-449	4.4	20
384	Fabrication and stimuli response of rice husk-based microcrystalline cellulose particle suspension under electric fields. <i>Cellulose</i> , 2016 , 23, 185-197	5.5	20
383	Fabrication of adduct filled glass fiber/epoxy resin laminate composites and their physical characteristics. <i>Polymer Bulletin</i> , 2016 , 73, 1373-1391	2.4	20
382	New analysis of yield stress on giant electrorheological fluids. <i>Colloid and Polymer Science</i> , 2012 , 290, 189-192	2.4	20
381	Sulfonated polystyrene nanoparticles coated with conducting polyaniline and their electro-responsive suspension characteristics under electric fields. <i>Polymer</i> , 2017 , 127, 174-181	3.9	20
380	Fe3O4 nanoparticle-embedded polystyrene composite particles fabricated via a Shirasu porous glass membrane technique and their magnetorheology. <i>Polymer</i> , 2017 , 125, 21-29	3.9	20
379	Synthesis of poly(methyl methacrylate)/graphene oxide nanocomposite particles via Pickering emulsion polymerization and their viscous response under an electric field. <i>Macromolecular Research</i> , 2017 , 25, 565-571	1.9	20
378	Role of Bio-Based Polymers on Improving Turbulent Flow Characteristics: Materials and Application. <i>Polymers</i> , 2017 , 9,	4.5	20
377	Fabrication and Physical Characterization of Biodegradable Poly(butylene succinate)/Carbon Nanofiber Nanocomposite Foams. <i>Journal of Macromolecular Science - Physics</i> , 2010 , 50, 100-110	1.4	20
376	Synthesis of microcapsule containing oil phase via in-situ polymerization. <i>Journal of Materials Science</i> , 2005 , 40, 1031-1033	4.3	20
375	Synthesis and electrorheological characterization of emulsion polymerized SAN-clay nanocomposite suspensions. <i>Macromolecular Symposia</i> , 2000 , 155, 229-237	0.8	20
374	Conducting Polymer/Clay Nanocomposites and Their Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1559-1581	1.3	20
373	Magnetorheological Elastomers: Fabrication, Characteristics, and Applications. <i>Materials</i> , 2020 , 13,	3.5	20
372	Fabrication of phosphate microcrystalline rice husk based cellulose particles and their electrorheological response. <i>Carbohydrate Polymers</i> , 2017 , 165, 247-254	10.3	19
371	Swelling-diffusion-interfacial polymerized core-shell typed polystyrene/poly(3, 4-ethylenedioxythiophene) microspheres and their electro-responsive characteristics. <i>Polymer</i> , 2017 , 115, 137-145	3.9	19
370	Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics. <i>Macromolecular Research</i> , 2015 , 23, 284-290	1.9	19
369	Self-standing and shape-memorable UV-curing epoxy polymers for three-dimensional (3D) continuous-filament printing. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2996-3003	7.1	19
368	Core-Shell Structured Polystyrene Coated Carbonyl Iron Microspheres and their Magnetorheology. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	19

367	Graphene oxide added carbonyl iron microsphere system and its magnetorheology under applied magnetic fields. <i>Journal of Applied Physics</i> , 2012 , 111, 07E724	2.5	19
366	A review on melt-state viscoelastic properties of polymer nanocomposites. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 8421-49	1.3	19
365	Core-shell typed polymer coated-carbonyl iron suspensions and their magnetorheology. <i>Journal of Physics: Conference Series</i> , 2009 , 149, 012078	0.3	19
364	Miscibility of biodegradable aliphatic polyester and poly(vinyl acetate) blends. <i>Journal of Applied Polymer Science</i> , 2000 , 77, 1348-1352	2.9	19
363	Electrorheological characteristics of polyaniline and its copolymer suspensions with ionic and nonionic substituents. <i>Colloid and Polymer Science</i> , 2000 , 278, 61-64	2.4	19
362	Fe3O4/sepiolite magnetic composite particles and their magneto- responsive characteristics. <i>Colloid and Polymer Science</i> , 2018 , 296, 11-19	2.4	19
361	Magnetostrictive and viscoelastic characteristics of polyurethane-based magnetorheological elastomer. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 73, 128-133	6.3	18
360	Pickering emulsion polymerized smart magnetic poly(methyl methacrylate)/Fe2O3 composite particles and their stimulus-response. <i>RSC Advances</i> , 2015 , 5, 23094-23100	3.7	18
359	Improvement of the mode I interlaminar fracture toughness of glass fiber/epoxy composites using polystyrene electrospun nanofibres. <i>Polymer Bulletin</i> , 2018 , 75, 5089-5102	2.4	18
358	Stimuli-responsive polyaniline coated silica microspheres and their electrorheology. <i>Smart Materials and Structures</i> , 2016 , 25, 055020	3.4	18
357	Facile synthesis of polyaniline nanotubes and their enhanced stimuli-response under electric fields. <i>RSC Advances</i> , 2015 , 5, 11905-11912	3.7	18
356	Multi-Walled Carbon Nanotube/Biodegradable Poly(butyleneadipate-co-butyleneterephthalate) Nanocomposites and Their Physical Characteristics. <i>Journal of Macromolecular Science - Physics</i> , 2012 , 51, 125-133	1.4	18
355	Structures of Polyaniline Bases: Semi-Empirical Computations. <i>Macromolecular Theory and Simulations</i> , 2009 , 18, 287-298	1.5	18
354	Effects of medium oil on electroresponsive characteristics of chitosan suspensions. <i>Colloid and Polymer Science</i> , 2009 , 287, 583-589	2.4	18
353	Coating of magnetic particle with polystyrene and its magnetorheological characterization. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2007 , 204, 4178-4181	1.6	18
352	Field Test on Vibration Control of Vehicle Suspension System Featuring ER Shock Absorbers. Journal of Intelligent Material Systems and Structures, 2007, 18, 1169-1174	2.3	18
351	Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites. <i>Porrime</i> , 2014 , 38, 726-734	1	18
350	Smart and Functional Conducting Polymers: Application to Electrorheological Fluids. <i>Molecules</i> , 2018 , 23,	4.8	18

349	Brake performance of coreBhell structured carbonyl iron/silica based magnetorheological suspension. <i>Journal of Magnetism and Magnetic Materials</i> , 2014 , 367, 69-74	2.8	17
348	Fabrication of ammonium persulfate coated silica microsphere via chemical grafting and its electrorheology. <i>Journal of Materials Science</i> , 2014 , 49, 2618-2623	4.3	17
347	Turbulent drag reduction characteristics of poly(acrylamide-co-acrylic acid) in a rotating disk apparatus. <i>Colloid and Polymer Science</i> , 2011 , 289, 1821-1827	2.4	17
346	Preparation and physical characterization of polyacrylamide coated magnetite particles. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2007 , 204, 4182-4185	1.6	17
345	Electrorheological characteristics of conducting polypyrrole/swollen MCM-41 nanocomposite. <i>Journal of Industrial and Engineering Chemistry</i> , 2008 , 14, 18-21	6.3	17
344	Synthesis and electrorheological characterization of carbonaceous particle suspensions. <i>Journal of Materials Science Letters</i> , 1999 , 18, 1445-1447		17
343	Fabrication of dopamine grafted polyaniline/carbonyl iron core-shell typed microspheres and their magnetorheology. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 500, 137-145	5.1	17
342	Graphene/graphene oxide: A new material for electrorheological and magnetorheological applications. <i>Journal of Intelligent Material Systems and Structures</i> , 2015 , 26, 1826-1835	2.3	16
341	Hollow submicron-sized spherical conducting polyaniline particles and their suspension rheology under applied electric fields. <i>Polymer</i> , 2018 , 140, 80-88	3.9	16
340	Emulsion-polymerized polyindole nanoparticles and their electrorheology. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 46384	2.9	16
339	Mechanical degradation of water-soluble acrylamide copolymer under a turbulent flow: Effect of molecular weight and temperature. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 33, 156-161	6.3	16
338	Effect of octahedral typed iron oxide particles on magnetorheological behavior of carbonyl iron dispersion. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 555, 685-690	5.1	16
337	Highly Tough, Biocompatible, and Magneto-Responsive FeO/Laponite/PDMAAm Nanocomposite Hydrogels. <i>Scientific Reports</i> , 2019 , 9, 15024	4.9	16
336	Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields. Journal of Materials Science, 2014 , 49, 7309-7316	4.3	16
335	Thermodynamic interaction and mechanical characteristics of Nylon 6 and polyhedral oligomeric silsesquioxane nanohybrids. <i>Journal of Materials Science</i> , 2012 , 47, 308-314	4.3	16
334	Polymeric Nanoparticle-Coated Pickering Emulsion-Synthesized Conducting Polyaniline Hybrid Particles and Their Electrorheological Study. <i>ACS Applied Materials & Description of the Communication of </i>	19 5	16
333	Turbulent Drag Reduction with Polymers in Rotating Disk Flow. <i>Polymers</i> , 2015 , 7, 1279-1298	4.5	16
332	Magnetorheology of suspensions based on graphene oxide coated or added carbonyl iron microspheres and sunflower oil. <i>Journal of Applied Physics</i> , 2014 , 116, 153508	2.5	16

331	Conducting Material-incorporated Electrorheological Fluids: Core-shell Structured Spheres. <i>Australian Journal of Chemistry</i> , 2012 , 65, 1195	1.2	16
330	Ultrasonically prepared polystyrene/multi-walled carbon nanotube nanocomposites. <i>Journal of Materials Science</i> , 2013 , 48, 3088-3096	4.3	16
329	Carboxylic acid functionalized MWNT coated poly(methyl methacrylate) microspheres and their electroresponse. <i>Diamond and Related Materials</i> , 2011 , 20, 275-278	3.5	16
328	Miniemulsion fabricated Fe3O4/poly(methyl methacrylate) composite particles and their magnetorheological characteristics. <i>Journal of Applied Physics</i> , 2010 , 107, 09A506	2.5	16
327	Synthesis and electrorheological characteristics of polyaniline/organoclay nanoparticles via Pickering emulsion polymerization. <i>Smart Materials and Structures</i> , 2010 , 19, 124002	3.4	16
326	Novel carbonyl iron/polystyrene (CI/PS) composites synthesized via solvent casting and their magnetorheology. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2007 , 204, 4186-4189	1.6	16
325	Preparation and Physical Characterization of Polyepichlorohydrin Elastomer/Clay Nanocomposites. Journal of Macromolecular Science - Physics, 2003 , 42, 1197-1208	1.4	16
324	EFFECT OF IONIC AND NONIONIC SUBSTITUENTS ON THE ELECTRORHEOLOGICAL CHARACTERISTICS OF POLYANILINE DERIVATIVES. <i>International Journal of Modern Physics B</i> , 2001 , 15, 988-995	1.1	16
323	Universal drag reduction characteristics of saline water-soluble poly(ethylene oxide) in a rotating disk apparatus. <i>Colloid and Polymer Science</i> , 2000 , 278, 701-705	2.4	16
322	Effect of surface treatment on magnetorheological characteristics of core-shell structured soft magnetic carbonyl iron particles. <i>Colloid and Polymer Science</i> , 2015 , 293, 2647-2654	2.4	15
321	Improvement the mode I interlaminar fracture toughness of glass fiber reinforced phenolic resin by using epoxidized soybean oil. <i>Polymer Bulletin</i> , 2018 , 75, 4769-4782	2.4	15
320	Effect of particle size and crosslinking on the toughening of core-shell-type rubber-modified poly(lactic acid) composites. <i>Polymer Testing</i> , 2018 , 65, 440-449	4.5	15
319	Core/Shell Polystyrene/Magnetite Hybrid Nanoparticles Fabricated by Pickering Emulsion Polymerization and Their Magnetorheological Response. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700408	2.6	15
318	Suspensions of Hollow Polydivinylbenzene Nanoparticles Decorated with Fe3O4 Nanoparticles as Magnetorheological Fluids for Microfluidics Applications. <i>ACS Applied Nano Materials</i> , 2019 , 2, 6939-69	4 7 .6	15
317	The comparison between the effects of solvent casting and melt intercalation mixing processes on different characteristics of polylactide-nanographite platelets composites. <i>Polymer Engineering and Science</i> , 2015 , 55, 1560-1570	2.3	15
316	Micromechanical deformation processes in PA/layered silicate nanocomposites: Correlation of structure and properties. <i>Polymer Engineering and Science</i> , 2007 , 47, 1235-1245	2.3	15
315	Polystyrene-b-Poly(Ethylene-r-butylene)-b-Polystyrene Triblock Copolymer/Organoclay Nanocomposites and Their Phase Characteristics. <i>Journal of Macromolecular Science - Physics</i> , 2004 , 43, 577-589	1.4	15
314	Synthesis and electrorheological characteristics of microencapsulated conducting polymer. Designed Monomers and Polymers, 2004, 7, 101-110	3.1	15

(2001-2005)

313	Viscoelasticity and solution viscosity of perfluoropolyether lubricants. <i>Tribology International</i> , 2005 , 38, 682-686	4.9	15
312	Effect of Turbulent Flow on Coil-Globule Transition of EDNA. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1237-1240	4.8	15
311	Synthesis and electrorheological characteristics of polyaniline@attapulgite nanoparticles via Pickering emulsion polymerization. <i>Materials Letters</i> , 2017 , 204, 42-44	3.3	15
310	Thermal, Mechanical, and Rheological Characterization of Polylactic Acid/Halloysite Nanotube Nanocomposites. <i>Journal of Macromolecular Science - Physics</i> , 2016 , 55, 680-692	1.4	15
309	Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 68, 342-349	6.3	15
308	Fabrication and magnetic stimuli-response of polydopamine-coated coreEhell structured carbonyl iron microspheres. <i>Colloid and Polymer Science</i> , 2016 , 294, 329-337	2.4	14
307	Suspension Rheology and Magnetorheological Finishing Characteristics of Biopolymer-Coated Carbonyliron Particles. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 2416-2424	3.9	14
306	Synthesis of self-assembled rectangular-shaped polyaniline nanotubes and their physical characteristics. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 47, 51-55	6.3	14
305	Fabrication of electric-stimuli responsive polyaniline/laponite composite and its viscoelastic and dielectric characteristics. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 482, 670-677	5.1	14
304	Fabrication and viscoelastic characteristics of waste tire rubber based magnetorheological elastomer. <i>Smart Materials and Structures</i> , 2016 , 25, 115026	3.4	14
303	Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response. <i>Carbohydrate Polymers</i> , 2016 , 137, 693-700	10.3	14
302	Rheological analysis of graphene oxide coated anisotropic PMMA microsphere based electrorheological fluid from Couette flow geometry. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 21, 172-177	6.3	14
301	Ultrathin polydimethylsiloxane-coated carbonyl iron particles and their magnetorheological characteristics. <i>Colloid and Polymer Science</i> , 2012 , 290, 1093-1098	2.4	14
300	PMMA coated carbonyl iron microbeads and their magnetic characteristics. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2007 , 204, 4198-4201	1.6	14
299	Comment on "Preparation and electrorheological property of rare earth modified amorphous Ba(x)Sr(1-x)TiO3 gel electrorheological fluid". <i>Journal of Colloid and Interface Science</i> , 2006 , 295, 291-3	9.3	14
298	Synthesis and characterization of polysaccharide phosphates based electrorheological fluids. <i>Materials Research Innovations</i> , 2003 , 7, 161-166	1.9	14
297	Preparation and mechanical characteristics of poly(methylaniline) based electrorheological fluid. Journal of Applied Polymer Science, 2005 , 96, 1924-1929	2.9	14
296	ELECTRORHEOLOGICAL BEHAVIOR OF CARBONACEOUS PARTICLE-BASED SUSPENSIONS. International Journal of Modern Physics B, 2001, 15, 634-640	1.1	14

295	Fella alloy based magnetorheological fluid and its viscoelastic characteristics. <i>Journal of Industrial and Engineering Chemistry</i> , 2020 , 82, 433-438	6.3	14
294	Fabrication of smart magnetite/reduced graphene oxide composite nanoparticles and their magnetic stimuli-response. <i>Journal of Colloid and Interface Science</i> , 2016 , 481, 194-200	9.3	14
293	Synthesis of Smart Poly(diphenylamine)/Magnetic Particle Composites and Their Electric/Magnetic Stimuli-Response. <i>Macromolecular Research</i> , 2018 , 26, 667-670	1.9	14
292	Polymer-Magnetic Composite Particles of FeD/Poly(-anisidine) and Their Suspension Characteristics under Applied Magnetic Fields. <i>Polymers</i> , 2019 , 11,	4.5	13
291	Polishing characteristics of optical glass using PMMA-coated carbonyl-iron-based magnetorheological fluid. <i>Smart Materials and Structures</i> , 2015 , 24, 065002	3.4	13
290	Pickering Emulsion Polymerized Polyaniline/Zinc-ferrite Composite Particles and Their Dual Electrorheological and Magnetorheological Responses. <i>ACS Omega</i> , 2020 , 5, 7675-7682	3.9	13
289	Polyaniline Coated Core-Shell Typed Stimuli-Responsive Microspheres and Their Electrorheology. <i>Polymers</i> , 2018 , 10,	4.5	13
288	Effect of medium viscosity on rheological characteristics of magnetite-based magnetorheological fluids. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 80, 197-204	6.3	13
287	Self-assembly of graphene oxide coated soft magnetic carbonyl iron particles and their magnetorheology. <i>Journal of Applied Physics</i> , 2014 , 115, 17B508	2.5	13
286	Generalized yield stress equation for electrorheological fluids. <i>Journal of Colloid and Interface Science</i> , 2013 , 409, 259-63	9.3	13
285	Xanthan gum-coated soft magnetic carbonyl iron composite particles and their magnetorheology. <i>Colloid and Polymer Science</i> , 2013 , 291, 963-969	2.4	13
284	Ternary Poly(styrene-co-acrylonitrile)/Poly(vinyl chloride) Blend Composites with Multi-Walled Carbon Nanotubes and Enhanced Physical Characteristics. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 329-335	3.9	13
283	Compatibility effect of reactive copolymers on polypropylene/polyamide 6 blends from commingled plastic wastes. <i>Journal of Applied Polymer Science</i> , 2006 , 101, 1188-1193	2.9	13
282	PREPARATION AND MAGNETORHEOLOGICAL CHARACTERIZATION OF CI/PVB CORE/SHELL PARTICLE SUSPENDED MR FLUIDS. <i>International Journal of Modern Physics B</i> , 2007 , 21, 4996-5002	1.1	13
281	Synthesis and electrorheology of potato starch phosphate. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 1770-1773	2.9	13
280	Rheological, Thermal, and Morphological Characteristics of Plasticized Cellulose Acetate Composite with Natural Fibers. <i>Macromolecular Symposia</i> , 2005 , 224, 297-308	0.8	13
279	Microrheological Study of Magnetic Particle Suspensions. <i>Industrial & Discourse Magnetic Particle Suspensions</i> . <i>Industrial & Discourse Particle Suspensions</i> . <i>Indus</i>	3.9	13
278	Highly transparent electrorheological fluids of silica nanoparticles: the effect of urea modification. Journal of Materials Chemistry C, 2016 , 4, 7875-7882	7.1	13

(2014-2020)

277	Nanoparticles Functionalized by Conducting Polymers and Their Electrorheological and Magnetorheological Applications. <i>Polymers</i> , 2020 , 12,	4.5	12	
276	Reciprocating magnetorheological polishing method for borosilicate glass surface smoothness. Journal of Industrial and Engineering Chemistry, 2020 , 84, 243-251	6.3	12	
275	Pickering emulsion polymerized core-shell structured poly(methyl methacrylate)/ graphene oxide particles and their electrorheological characteristics. <i>Polymer Testing</i> , 2018 , 66, 195-202	4.5	12	
274	Non-stoichiometric zinc-doped spinel ferrite nanoparticles with enhanced magnetic property and their magnetorheology. <i>Colloid and Polymer Science</i> , 2018 , 296, 405-409	2.4	12	
273	Enhanced magnetorheological response of magnetic chromium dioxide nanoparticle added carbonyl iron suspension. <i>Smart Materials and Structures</i> , 2017 , 26, 095006	3.4	12	
272	Conducting polyaniline-wrapped sepiolite composite and its stimuli-response under applied electric fields. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 469, 20-28	5.1	12	
271	Rheological properties of Ag suspended fluid for inkjet printing. <i>Journal of Applied Physics</i> , 2010 , 108, 102803	2.5	12	
270	Novel fabrication of polyaniline particles wrapped by exfoliated clay sheets and their electrorheology. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 285-9	1.3	12	
269	Rheological analysis of oligomeric perfluoropolyethers. <i>Polymer</i> , 2010 , 51, 1882-1886	3.9	12	
268	Preparation and characterization of poly(vinyl butyral)/Na+-montmorillonite nanocomposite. <i>Journal of Materials Science</i> , 2004 , 39, 3151-3153	4.3	12	
267	The effect of particle concentration of poly(p-phenylene) on electrorheological response. <i>Journal of Applied Polymer Science</i> , 2002 , 84, 2397-2403	2.9	12	
266	Stability Study of Flexible 6,13-Bis(triisopropylsilylethynyl)pentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol)/Yttrium Oxide Nanocomposite Gate Insulator. <i>Polymers</i> , 2016 , 8,	4.5	12	
265	Large scale and facile sonochemical synthesis of magnetic graphene oxide nanocomposites and their dual electro/magneto-stimuli responses. <i>RSC Advances</i> , 2016 , 6, 77925-77930	3.7	12	
264	Conformance control in oil reservoir based on magnetorheological behavior of nanoparticle suspension. <i>Journal of Environmental Management</i> , 2019 , 231, 1127-1134	7.9	12	
263	Influence of Graphene Nanoplatelet and Silver Nanoparticle on the Rheological Properties of WaterBased Mud [[]Applied Sciences (Switzerland), 2018, 8, 1386	2.6	12	
262	Analysis of the flow behavior of electrorheological fluids containing polypyrrole nanoparticles or polypyrrole/silica nanocomposite particles. <i>Rheologica Acta</i> , 2020 , 59, 415-423	2.3	11	
261	Graphene oxide as a Pickering emulsifier for poly(glycidyl methacrylate) composite particles and their suspension rheology under applied electric fields. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 550, 56-64	5.1	11	
260	Enhanced effect of dopant on polyaniline nanofiber based electrorheological response. <i>Materials Chemistry and Physics</i> , 2014 , 147, 843-849	4.4	11	

259	Magnetic Carbonyl Iron Suspension with Sepiolite Additive and Its Magnetorheological Property. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	11
258	Graphene oxide nanocomposites and their electrorheology. <i>Materials Research Bulletin</i> , 2013 , 48, 4997	-55002	11
257	Smart Polymer/Carbon Nanotube Nanocomposites and Their Electrorheological Response. <i>Materials</i> , 2014 , 7, 3399-3414	3.5	11
256	Synthesis and Magnetorheological Characterization of Magnetite Nanoparticle and Poly(Vinyl Butyral) Composite. <i>IEEE Transactions on Magnetics</i> , 2009 , 45, 2460-2463	2	11
255	Bingham characteristics of polymer-based electrorheological fluids with different electrode gaps and materials. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 3636-3644	2.9	11
254	N-substituted copolyaniline for electrorheological material. <i>Journal of Materials Science Letters</i> , 1997 , 16, 672-673		11
253	Effect of interfacial interaction on the structure and rheological properties of polyamide-6/clay nanocomposites. <i>Composite Interfaces</i> , 2006 , 13, 773-782	2.3	11
252	Synthesis and Electrorheological Characterization of Polyaniline/Barium Titanate Hybrid Suspension. <i>Macromolecular Symposia</i> , 2006 , 242, 49-54	0.8	11
251	Preparation and characterization of plasticized cellulose acetate biocomposite with natural fiber. Journal of Materials Science, 2004 , 39, 6631-6633	4.3	11
250	Electrorheological fluid characterization via a vertical oscillation rheometer. <i>Polymer Testing</i> , 2001 , 20, 913-918	4.5	11
249	Stimuli-Responsive Graphene Oxide-Polymer Nanocomposites. <i>Macromolecular Research</i> , 2019 , 27, 106	1±16070) 11
248	Rheological and mechanical properties of polypropylene composites containing microfibrillated cellulose (MFC) with improved compatibility through surface silylation. <i>Cellulose</i> , 2019 , 26, 1085-1097	5.5	11
247	Synthesis of core-shell formed carbonyl iron/polydiphenylamine particles and their rheological response under applied magnetic fields. <i>Colloid and Polymer Science</i> , 2018 , 296, 1857-1865	2.4	11
246	Effect of organoclay on the properties of maleic-anhydride grafted polypropylene and poly(methyl methacrylate) blend. <i>Polymer Composites</i> , 2017 , 38, 431-440	3	10
245	Dispersion state and rheological characteristics of carbon nanotube suspensions. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 52, 369-375	6.3	10
244	Viscoelastic and mechanical behaviors of magneto-rheological carbonyl iron/natural rubber composites with magnetic iron oxide nanoparticle. <i>Smart Materials and Structures</i> , 2019 , 28, 045012	3.4	10
243	Polyindole nanoparticle-based electrorheological fluid and its green and clean future potential conformance control technique to oil fields. <i>Journal of Cleaner Production</i> , 2019 , 231, 1218-1225	10.3	10
242	Conducting poly(N-methylaniline)-coated cross-linked poly(methyl methacrylate) nanoparticle suspension and its steady shear response under electric fields. <i>Colloids and Surfaces A:</i> Physicochemical and Engineering Aspects, 2015, 481, 506-513	5.1	10

241	Enhanced magnetorheological characteristics of hollow magnetite nanoparticle-carbonyl iron microsphere suspension. <i>Smart Materials and Structures</i> , 2020 , 29, 055022	3.4	10
240	Formation of corelinell structured complex microparticles during fabrication of magnetorheological elastomers and their magnetorheological behavior. <i>Smart Materials and Structures</i> , 2016 , 25, 115028	3.4	10
239	Effect of Graphene Oxide on Carbonyl-Iron-Based Magnetorheological Fluid. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	10
238	Magnetorheology of xanthan-gum-coated soft magnetic carbonyl iron microspheres and their polishing characteristics. <i>Journal of the Korean Physical Society</i> , 2013 , 62, 2118-2122	0.6	10
237	Effect of Halloysite Clay on Magnetic Carbonyl Iron-Based Magnetorheological Fluid. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	10
236	Fabrication and electrorheology of graphene oxide/ionic N-substituted copolyaniline composite. <i>Colloid and Polymer Science</i> , 2013 , 291, 1401-1408	2.4	10
235	Pentacene TFT With Reduced Threshold Voltage Using PMMA-co-MAA/Sol-Gel-Derived \$hbox{TiO}_{2}\$ Composite Insulator. <i>IEEE Electron Device Letters</i> , 2009 , 30, 1146-1148	4.4	10
234	Electrorheological characteristics of solvent-cast polypyrrole/clay nanocomposite. <i>Journal of Applied Polymer Science</i> , 2009 , 112, 1365-1371	2.9	10
233	Polymer modified hematite nanoparticles for electrophoretic display. <i>Journal of Electroceramics</i> , 2009 , 23, 474-477	1.5	10
232	Poly(ethylene terephthalate) and polyhedral oligomeric silsesquioxane nanohybrids and their physical characteristics. <i>Journal of Materials Science</i> , 2010 , 45, 5984-5987	4.3	10
231	Universal Characteristics of Drag Reducing Polyisobutylene in Kerosene. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 705-711	2.2	10
230	Molecular Rheology of Perfluoropolyether Lubricant via Nonequilibrium Molecular Dynamics Simulation. <i>IEEE Transactions on Magnetics</i> , 2007 , 43, 903-905	2	10
229	Fabrication and viscoelastic properties of biodegradable polymer/organophilic clay nanocomposites. <i>Journal of Materials Science Letters</i> , 2003 , 22, 53-55		10
228	SYNTHESIS AND VISCOELASTIC BEHAVIORS OF POLY(ANILINE-CO-O-ETHOXYANILINE) PARTICLES SUSPENDED ELECTRORHEOLOGICAL FLUID. <i>International Journal of Modern Physics B</i> , 2001 , 15, 649-65	56 ^{1.1}	10
227	Dynamics of the formation of an aureole in the bursting of soap films. <i>Physical Review E</i> , 1996 , 54, R31	17 <u>⊱</u> B ₃ 31	20 0
226	Synthesis and thermal analysis of hydrophobic iron oxide nanoparticles for improving in-situ combustion efficiency of heavy oils. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 71, 402-409	6.3	10
225	Effects of hydrophobic modification of xanthan gum on its turbulent drag reduction characteristics. Journal of Industrial and Engineering Chemistry, 2017, 54, 146-150	6.3	9
224	Spontaneous Phase Separation of Poly(3-hexylthiophene)s with Different Regioregularity for a Stretchable Semiconducting Film. <i>Advanced Functional Materials</i> , 2019 , 29, 1903163	15.6	9

223	Yield stress analysis of electrorheological suspensions containing core@hell structured anisotropic poly(methyl methacrylate) microparticles. <i>Polymers for Advanced Technologies</i> , 2015 , 26, 117-120	3.2	9
222	CoreBhell structured poly(methyl methacrylate)-coated zirconium dioxide nanoparticle and its dispersion stability. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 21, 145-150	6.3	9
221	Fabrication of p-aminobenzoic acid grafted carbonyl iron/polyindole composite particles and their magnetorheological response. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 64, 102-106	6.3	9
220	Enhanced Rate Division Multiple Access for Electromagnetic Nanonetworks. <i>IEEE Sensors Journal</i> , 2016 , 16, 7287-7296	4	9
219	Effect of magnetic field intensity and Fe2O3 nanoparticle additive on electrical conductivity and viscosity of magnetorheological carbonyl iron suspension-based membranes. <i>Smart Materials and Structures</i> , 2018 , 27, 095021	3.4	9
218	Graphene and Graphene Oxide Composites and Their Electrorheological Applications. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-8	3.2	9
217	Yield stress analysis of 1D calcium and titanium precipitate-based giant electrorheological fluids. <i>Colloid and Polymer Science</i> , 2013 , 291, 1267-1270	2.4	9
216	Surface force arising from adsorbed graphene oxide in alumina suspensions with different shape and size. <i>AICHE Journal</i> , 2013 , 59, 3633-3641	3.6	9
215	Effect of Glass Transition Temperature of Pressure Sensitive Adhesives on Light Leakage in LCD Panel. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2009 , 46, 1142-1150	2.2	9
214	Effect of Surfactant on Preparation of Poly(4-Vinylphenol)/Titanium Dioxide Composite for a Gate Insulator of Organic Thin Film Transistors. <i>Molecular Crystals and Liquid Crystals</i> , 2007 , 471, 173-179	0.5	9
213	Effect of pH on Physical Characteristics of Conducting Poly(O-Ethoxyaniline) Nanocomposites. Journal of Macromolecular Science - Physics, 2005, 44, 365-375	1.4	9
212	Electrophoretic TiO2 nanoparticle modified with poly (methyl methacrylate). <i>Journal of Electroceramics</i> , 2006 , 17, 1031-1033	1.5	9
211	Magnetorheological Characterization of Polymer-Iron Composite Suspensions. <i>Materials Science Forum</i> , 2004 , 449-452, 1201-1204	0.4	9
210	ELECTRORHEOLOGICAL RESPONSE OF POLYANILINE-TIO2 COMPOSITE SUSPENSIONS. International Journal of Modern Physics B, 2005 , 19, 1128-1134	1.1	9
209	Characterization of turbulent drag reduction in rotating disk system. <i>Korean Journal of Chemical Engineering</i> , 1994 , 11, 8-13	2.8	9
208	Corelhell-structured Fe3O4 nanocomposite particles for high-performance/stable magnetorheological fluids: preparation and characteristics. <i>Journal of the Korean Ceramic Society</i> , 2020 , 57, 608-631	2.2	9
207	Fabrication of magnetite-coated attapulgite magnetic composite nanoparticles and their magnetorheology. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 507, 103-109	5.1	9
206	Microfibrillated Cellulose Suspension and Its Electrorheology. <i>Polymers</i> , 2019 , 11,	4.5	9

205	On the attributes of invert-emulsion drilling fluids modified with graphene oxide/inorganic complexes. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 93, 290-301	6.3	9
204	Pickering emulsion polymerized magnetite-poly(methyl methacrylate) composite particles and their magnetorheology. <i>Colloid and Polymer Science</i> , 2017 , 295, 959-966	2.4	8
203	Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids. <i>Smart Materials and Structures</i> , 2017 , 26, 054007	3.4	8
202	Quantitative Electrode Design Modeling of an Electroadhesive Lifting Device Based on the Localized Charge Distribution and Interfacial Polarization of Different Objects. <i>ACS Omega</i> , 2019 , 4, 79	94:800	00 ⁸
201	On Interaction Characteristics of Polyhedral Oligomeric Silsesquioxane Containing Polymer Nanohybrids. <i>Polymer Bulletin</i> , 2015 , 72, 2331-2352	2.4	8
200	Graphene Oxide and Its Inorganic Composites: Fabrication and Electrorheological Response. <i>Materials</i> , 2019 , 12,	3.5	8
199	Synthesis and characteristics of snowman-like fluorescent PMMA microbeads. <i>Colloid and Polymer Science</i> , 2012 , 290, 1703-1706	2.4	8
198	Carboxylic acid functionalized multi-walled carbon nanotube-adsorption onto poly(methyl methacrylate) microspheres. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 1058-61	1.3	8
197	Magnetorheological Characteristics of Polymer Coated Magnetite Particle Composites With Carbon Nanotube Nanohybrid. <i>IEEE Transactions on Magnetics</i> , 2009 , 45, 2503-2506	2	8
196	Anti-static additive for pressure-sensitive adhesives and its effect on light leakage in liquid crystal display. <i>Journal of Industrial and Engineering Chemistry</i> , 2010 , 16, 162-165	6.3	8
195	Comment on: Preparation, microstructure, and electrorheological property of nano-sized TiO2 particle materials doped with metal oxides. <i>Journal of Materials Science</i> , 2008 , 43, 5702-5704	4.3	8
194	Electroresponsive characteristics of highly substituted phosphate starch. <i>Journal of Materials Science</i> , 2004 , 39, 6083-6086	4.3	8
193	Electrorheology of undoped poly(p-phenylene) particle-based suspension. <i>Journal of Materials Science</i> , 2002 , 37, 4057-4061	4.3	8
192	Liquid crystal added electrorheological fluid. <i>Journal of Materials Science Letters</i> , 2003 , 22, 807-809		8
191	Conducting poly(methyl methacrylate)/polyaniline (core/shell) particles for electrorheological fluids. <i>Designed Monomers and Polymers</i> , 2004 , 7, 111-117	3.1	8
190	Rheological and Mechanical Characterization of Biodegradable Aliphatic Polyester and Poly(epichlorohydrin) Blends. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 2634-2640	2.6	8
189	Electrorheological fluids based on chitosan particles. <i>Journal of Materials Science Letters</i> , 2001 , 20, 102	9-1031	1 8
188	Application of Emulsion Intercalated Conducting Polymer-Clay Nanocomposite. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 377, 333-336	0.5	8

187	Aqueous ferric chloride doped poly(p-phenylene) for electrorheological material. <i>Journal of Materials Science Letters</i> , 2000 , 19, 1629-1631		8
186	Rheological Study on Biodegradable Poly(3-Hydroxybutyrate) and Its Copolymer. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1995 , 32, 843-852	2.2	8
185	Poly(vinyl acetate)/Clay Nanocomposite Materials for Organic Thin Film Transistor Application. Journal of Nanoscience and Nanotechnology, 2008 , 8, 2676-2679	1.3	8
184	Poly(diphenylamine)/polyaniline core/shell composite nanospheres synthesized using a reactive surfactant and their electrorheology. <i>Polymer</i> , 2020 , 188, 122161	3.9	8
183	Electrorheological Characteristics of Poly(diphenylamine)/magnetite Composite-Based Suspension. <i>Materials</i> , 2019 , 12,	3.5	7
182	Poly(glycidyl methacrylate) Coated Soft-Magnetic Carbonyl Iron/Silicone Rubber Composite Elastomer and Its Magnetorheology. <i>Macromolecular Research</i> , 2019 , 27, 448-453	1.9	7
181	Jellyfish-shaped p-phenylenediamine functionalized graphene oxide-g-polyaniline fibers and their electrorheology. <i>Polymer</i> , 2019 , 168, 29-35	3.9	7
180	Magnetorheology of a Carbonyliron Microsphere Suspension with a Halloysite Additive and Its Damping Force Characteristics. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 4655-4663	3.9	7
179	Bio-Inspired Passion Fruit-like FeO@C Nanospheres Enabling High-Stability Magnetorheological Performances. <i>Langmuir</i> , 2020 , 36, 7706-7714	4	7
178	Microwave-assisted synthesis and characterization of iron oxide microfibers. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6159-6167	7.1	7
177	Elegant Surface of CoNi Alloys toward Efficient Magnetorheological Performances Realized with Carbon Quantum Dots. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800164	4.6	7
176	Magnetorheological properties and polishing characteristics of silica-coated carbonyl iron magnetorheological fluid. <i>Journal of Intelligent Material Systems and Structures</i> , 2018 , 29, 137-146	2.3	7
175	Synthesis of OrganicIhorganic Poly(diphenylamine)/Magnetite Composite Particles and Their Magnetorheological Response. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-4	2	7
174	Preparation and Magnetorheological Response of Triangular-Shaped Single-Crystalline Magnetite Particle-Based Magnetic Fluid. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-4	2	7
173	Fabrication of anisotropic snowman-like magnetic particles and their magnetorheological response. <i>Journal of Applied Physics</i> , 2014 , 115, 17B529	2.5	7
172	Iron oxide/MCM-41 mesoporous nanocomposites and their magnetorheology. <i>Colloid and Polymer Science</i> , 2013 , 291, 1895-1901	2.4	7
171	Core-Shell-Structured Copolyaniline-Coated Polymeric Nanoparticle Suspension and Its Viscoelastic Response under Various Electric Fields. <i>Materials</i> , 2015 , 8, 4932-4942	3.5	7
170	Carbonyl Iron Suspension With CoreBhell Structured Fe3O4@SiO2 Nanoparticle Additives and its Magnetorheological Property. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	7

(2012-2008)

169	Comment on Transient overshoot of the electrorheological responses of conducting polymer-coated polyethylene suspensions in mineral oil Synthetic Metals, 2008, 158, 72-74	3.6	7	
168	PREPARATION AND ELECTRORHEOLOGICAL CHARACTERISTICS OF PANI/MWNT NANOCOMPOSITE. <i>International Journal of Modern Physics B</i> , 2007 , 21, 5003-5009	1.1	7	
167	Rheological Properties of Polystyrene-Organophilic Layered Silicate Nanocomposites. <i>Macromolecular Symposia</i> , 2006 , 245-246, 199-207	0.8	7	
166	Comment on "Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions". <i>Journal of Colloid and Interface Science</i> , 2006 , 300, 818-9	9.3	7	
165	Viscoelastic properties of exfoliated polyamide-6/layered silicate nanocomposite. <i>Journal of Materials Science</i> , 2006 , 41, 1843-1846	4.3	7	
164	SYNTHESIS AND ELECTRORHEOLOGY OF PHOSPHATE CELLULOSE SUSPENSIONS. <i>International Journal of Modern Physics B</i> , 2002 , 16, 2487-2493	1.1	7	
163	Melt Rheology and Mechanical Characteristics of Poly(Lactic Acid)/Alkylated Graphene Oxide Nanocomposites. <i>Polymers</i> , 2020 , 12,	4.5	7	
162	Effect of silicon-based nanoparticles on enhanced oil recovery: Review. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2021 , 122, 241-259	5.3	7	
161	Fabrication and electro-responsive electrorheological characteristics of rice husk-based nanosilica suspension. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 95, 432-437	5.3	7	
160	Toughness and rheological characteristics of poly(lactic acid)/acrylic coreEhell rubber blends. <i>Polymer Bulletin</i> , 2019 , 76, 5483-5497	2.4	7	
159	Magnetic Polymer Composite Particles: Design and Magnetorheology. <i>Polymers</i> , 2021 , 13,	4.5	7	
158	Rheological effect of Zn-doped ferrite nanoparticle additive with enhanced magnetism on micro-spherical carbonyl iron based magnetorheological suspension. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 571, 168-173	5.1	6	
157	Synchronized oscillations of dimers in biphasic charged fd-virus suspensions. <i>Physical Review E</i> , 2016 , 94, 020602	2.4	6	
156	Magnetorheological Characteristics of Nano-Sized Iron Oxide Coated Polyaniline Composites. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-4	2	6	
155	Facile fabrication of core-shell typed silica/poly(diphenylamine) composite microparticles and their electro-response. <i>Polymer</i> , 2019 , 182, 121851	3.9	6	
154	Nanoporous Fe-MCM-22 Additive Effect on Magnetorheological Response of Magnetic Carbonyl Iron Suspension. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 3410-3413	2	6	
153	Hollow Structured Magnetic Particles of CoFe2O4 and Their Magnetorheological Characteristics. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	6	
152	Surfactant effect on functionalized carbon nanotube coated snowman-like particles and their electro-responsive characteristics. <i>Materials Research Bulletin</i> , 2012 , 47, 2752-2755	5.1	6	

151	Polyphenylene Ether/Glycol Modified Polyethylene Terephthalate Blends and their Physical Characteristics. <i>Journal of Macromolecular Science - Physics</i> , 2012 , 51, 798-806	1.4	6
150	Polyamide Coated Soft Magnetic Microspheres and Their Magnetorheology. <i>IEEE Transactions on Magnetics</i> , 2012 , 48, 3446-3449	2	6
149	Comment on Bynthesis and electrorheological characteristics of titanate nanotube suspensions under oscillatory shear <i>Journal of Industrial and Engineering Chemistry</i> , 2010 , 16, 651-653	6.3	6
148	Magnetorheological Characteristics of Carbonyl Iron Embedded Suspension Polymerized Poly(Methyl Methacrylate) Micro-Bead. <i>IEEE Transactions on Magnetics</i> , 2008 , 44, 3867-3870	2	6
147	MAGNETORHEOLOGY OF CARBONYL-IRON SUSPENSION WITH IRON/MCM-41 ADDITIVE. International Journal of Modern Physics B, 2007 , 21, 4981-4987	1.1	6
146	Rheological Characterization of Polyisobutylene Solutions from Rod-Climbing Experimentation. <i>International Journal of Polymer Analysis and Characterization</i> , 1996 , 3, 75-88	1.7	6
145	Rheological analysis of titanium dioxide nano-whisker based electrorheological fluids. <i>Journal of Industrial and Engineering Chemistry</i> , 2020 , 83, 285-288	6.3	6
144	Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields. <i>Materials</i> , 2016 , 9,	3.5	6
143	Influence of clay-based additive on sedimentation stability of magnetorheological fluid. <i>Smart Materials and Structures</i> , 2021 , 30, 027001	3.4	6
142	Conducting polymer-based electro-responsive smart suspensions. <i>Chemical Papers</i> , 2021 , 75, 5009-5034	1.9	6
141	Effect of carbon-based and metal-based nanoparticles on enhanced oil recovery: A review. <i>Journal of Molecular Liquids</i> , 2021 , 338, 116903	6	6
140	Conducting polymer/clay nanocomposites and their applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1559-81	1.3	6
139	Fabrication and electric stimuli-response of semiconducting poly(3,4-ethylenedioxythiophene)/silica nanocomposite particles. <i>European Polymer Journal</i> , 2018 , 101, 255-261	5.2	5
138	Magnetite Embedded Mini-Emulsion Polymerized Polystyrene Particles and Their Magnetorheology. <i>Macromolecular Research</i> , 2018 , 26, 353-358	1.9	5
137	Fabrication of poly(o-anisidine) coated silica core\(\begin{align*} \text{hell microspheres and their electrorheological response. } \text{Materials Research Express, 2017, 4, 116310} \end{align*}	1.7	5
136	Thermorheological properties of nano-magnetorheological fluid in dynamic mode: experimental investigation. <i>Smart Materials and Structures</i> , 2015 , 24, 057001	3.4	5
135	Dynamic response of a graphene oxide-polyaniline composite suspension under an applied electric field. <i>Journal of the Korean Physical Society</i> , 2012 , 61, 1422-1425	0.6	5
134	Transparent thiourea treated silica suspension through refractive index matching method and its electrorheology. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 397, 80-84	5.1	5

(2009-2010)

133	Comment on 'Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities'. <i>Nanotechnology</i> , 2010 , 21, 378001	3.4	5	
132	Effect of preparation method of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite on its characteristics. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 6089-95	1.3	5	
131	Shear Stress and Dielectric Analysis of H3PO4 Doped Polyaniline Based Electrorheological Fluid. Journal of Macromolecular Science - Physics, 2007, 46, 683-692	1.4	5	
130	Synthesis and Characterization of Polyaniline-Na+-Montmorillonite Nanocompositeby Microemulsion Polymerization. <i>Molecular Crystals and Liquid Crystals</i> , 2007 , 463, 221/[503]-225/[507]	0.5	5	
129	Microencapsulation of Electrophoretic TiO2 Nanoparticles for Electronic Ink. <i>Molecular Crystals and Liquid Crystals</i> , 2006 , 445, 43/[333]-48/[338]	0.5	5	
128	Effect of Solubility Parameter of Polymer-Solvent Pair on Turbulent Drag Reduction. Macromolecular Symposia, 2005 , 222, 169-174	0.8	5	
127	Polypropylene/polyamide-6 blends based on commingled plastic wastes. <i>Journal of Materials Science</i> , 2005 , 40, 3857-3859	4.3	5	
126	Nitrogen-doped graphene quantum dot nanofluids to improve oil recovery from carbonate and sandstone oil reservoirs. <i>Journal of Molecular Liquids</i> , 2021 , 330, 115715	6	5	
125	Core-Shell Structured Magnetite-Poly(diphenylamine) Microspheres and Their Tunable Dual Response under Magnetic and Electric Fields. <i>Langmuir</i> , 2021 , 37, 2298-2311	4	5	
124	Effect of oxidants on morphology of interfacial polymerized polyaniline nanofibers and their electrorheological response. <i>Polymer</i> , 2018 , 158, 176-182	3.9	5	
123	Stimuli-response of chlorosilane-functionalized starch suspension under applied electric fields. <i>Polymer Bulletin</i> , 2017 , 74, 823-837	2.4	4	
122	Synthesis of conducting polymeric nanoparticles in the presence of a polymerizable surfactant and their electrorheological response. <i>Colloid and Polymer Science</i> , 2019 , 297, 781-784	2.4	4	
121	Magnetorheology of iron associated magnetic metal-organic framework nanoparticle. <i>Journal of Applied Physics</i> , 2015 , 117, 17C732	2.5	4	
120	Electrorheological response of microporous covalent triazine-based polymeric particles. <i>Colloid and Polymer Science</i> , 2018 , 296, 907-915	2.4	4	
119	Field-responsive smart composite particle suspension: materials and rheology 2012 , 24, 147-153		4	
118	Preparation of polystyrene/polyaniline composite particles and their electrorheology. <i>Journal of Physics: Conference Series</i> , 2009 , 149, 012017	0.3	4	
117	Comment on Breparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions <i>Journal of Materials Science</i> , 2009 , 44, 2999-3001	4.3	4	
116	Microemulsion polymerized polyaniline/montmorillonite nanocomposite and its electrorheology. Journal of Nanoscience and Nanotechnology, 2009 , 9, 1501-4	1.3	4	

115	Rotating disk apparatus for polymer-induced turbulent drag reduction. <i>Journal of Mechanical Science and Technology</i> , 2008 , 22, 1908-1913	1.6	4
114	EFFECT OF POLY (SODIUM 4-STYRENESULFONATE) STABILIZER ON SYNTHESIS AND CHARACTERIZATION OF POLYANILINE NANOPARTICLES. <i>Molecular Crystals and Liquid Crystals</i> , 2003 , 407, 7-13	0.5	4
113	Biocompatible Polysaccharide-Based Electrorheological Suspensions. <i>Journal of Macromolecular Science - Physics</i> , 2005 , 44, 573-581	1.4	4
112	CHARACTERISTICS OF A YIELD STRESS SCALING FUNCTION FOR ELECTRORHEOLOGICAL FLUIDS. International Journal of Modern Physics B, 2002, 16, 2636-2642	1.1	4
111	Effect of reduced graphene oxide and MnFe2O4 nanoparticles on carbonyl iron for magnetorheological fluids. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 98, 140-147	6.3	4
110	Glutathione-capped core-shell structured magnetite nanoparticles: Fabrication and their nonlinear optical characteristics. <i>Current Applied Physics</i> , 2020 , 20, 822-827	2.6	3
109	Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications. <i>Soft Matter</i> , 2016 , 12, 2816-25	3.6	3
108	Raman spectroscopy study of solution-processed In2O3 thin films: effect of annealing temperature on the characteristics of In2O3 semiconductors and thin-film transistors. <i>Molecular Crystals and Liquid Crystals</i> , 2019 , 679, 38-47	0.5	3
107	Non-Einstein Viscosity Phenomenon of Acrylonitrile-Butadiene-Styrene Composites Containing Lignin-Polycaprolactone Particulates Highly Dispersed by High-Shear Stress. <i>ACS Omega</i> , 2019 , 4, 10036	5-31804	3 ³
106	Submicron Magnetic Particles of \${rm Mn}_{0.25}{rm Fe}_{2.75}{rm O}_{4}\$ and Their Magnetorheological Characteristics. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 3406-3409	2	3
105	Fabrication and characterization of core-shell structured black pigment particles for electrophoretic display. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 4279-82	1.3	3
104	MAGNETORHEOLOGICAL CHARACTERIZATION OF HOLLOW POLYMER/MAGNETITE MICROSPHERICAL COMPOSITE. <i>International Journal of Modern Physics B</i> , 2009 , 23, 3613-3618	1.1	3
103	Preparation of poly(4-vinylphenol)/titanium dioxide composite and its application as a gate dielectric for organic thin-film transistors. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 4466-7	o ^{1.3}	3
102	Comment on The electrorheological properties of nano-sized SiO2 particle materials doped with rare earths [] Scripta Materialia, 2006, 55, 415-417	5.6	3
101	Carbon Nanotube-Organized Polymeric Fibers and Measurement of Their Electrical Conductivity. <i>Molecular Crystals and Liquid Crystals</i> , 2007 , 464, 15/[597]-21/[603]	0.5	3
100	Turbulent drag reduction characteristics of amylopectin and its derivative. <i>E-Polymers</i> , 2004 , 4,	2.7	3
99	Polymer/organoclay nanocomposites with biodegradable aliphatic polyester and its blends: preparation and characterization. <i>E-Polymers</i> , 2004 , 4,	2.7	3
98	Electrorheology Of Conducting Polyaniline Composite Particles. <i>Materials Research Innovations</i> , 2005 , 9, 6-7	1.9	3

(2009-2005)

97	Preparation and physical characteristics of solvent intercalated poly(o-ethoxyaniline)/organoclay nanocomposites. <i>Journal of Materials Science</i> , 2005 , 40, 4951-4953	4.3	3
96	Preparation and electrorheological property of conducting copolyaniline/MCM-41 nanocomposite. <i>Studies in Surface Science and Catalysis</i> , 2005 , 517-522	1.8	3
95	Polyindole-Coated Soft-Magnetic Particles and their Viscoelastic Behaviors under Applied Magnetic Field. <i>Journal of Magnetics</i> , 2019 , 24, 155-161	1.9	3
94	Synthesis and Electrorheological Response of Graphene Oxide/Polydiphenylamine Microsheet Composite Particles. <i>Polymers</i> , 2020 , 12,	4.5	3
93	Enhanced Electrorheological Response of Cellulose: A Double Effect of Modification by Urea-Terminated Silane. <i>Polymers</i> , 2018 , 10,	4.5	3
92	Pickering emulsion-polymerized conducting polymer nanocomposites and their applications. <i>Chemical Papers</i> , 2017 , 71, 179-188	1.9	2
91	Flow curve analysis of a Pickering emulsion-polymerized PEDOT:PSS/PS-based electrorheological fluid. <i>Smart Materials and Structures</i> , 2017 , 26, 117001	3.4	2
90	Nanosilica Extracted from Hexafluorosilicic Acid of Waste Fertilizer as Reinforcement Material for Natural Rubber: Preparation and Mechanical Characteristics. <i>Materials</i> , 2019 , 12,	3.5	2
89	Role of calcium carbonate as an interfacial compatibilizer in the magneto-rheological elastomers based on ethylene/acrylic elastomer (AEM) and its magneto-induced properties. <i>Materials Research Express</i> , 2019 , 6, 085320	1.7	2
88	Lifting-Force Maximization of a Micropatterned Electroadhesive Device Comparable to the Human-Finger Grip. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1596-1602	4	2
87	Synthesis and Viscoelastic Behavior of Non-Stoichiometric Spinel Ferrite Particle Suspension. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-4	2	2
86	Magnetorheology of CoreBhell Structured Mesoporous Fe3O4@mSiO2 Nanoparticles in Carbonyl Iron Dispersion. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-4	2	2
85	Analysis of the static yield stress for giant electrorheological fluids 2017 , 29, 215-218		2
84	Light-induced characteristic variations in organic thin-film transistors with a poly(vinylphenol-co-methyl methacrylate)/titanium-dioxide nanocomposite gate dielectric. <i>Journal of the Korean Physical Society</i> , 2015 , 67, 1853-1858	0.6	2
83	Poly(4-vinylphenol-co-methyl methacrylate)/titanium dioxide nanocomposite gate insulators for 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors. <i>Journal of the Korean Physical Society</i> , 2014 , 65, 1956-1960	0.6	2
82	Magnetorheological response of soft-magnetic carbonyl iron microbeads dispersed in a poly(ethylene oxide) solution. <i>Journal of the Korean Physical Society</i> , 2012 , 61, 1413-1417	0.6	2
81	Electrical Characteristics of Organic Thin-Film Transistors with Polystyrene/Sol-Gel Derived Titania Composite Insulator. <i>Molecular Crystals and Liquid Crystals</i> , 2010 , 519, 222-226	0.5	2
80	Preparation of PE/MWNT nanocomposites by In-situ metallocene polymerization. <i>International Journal of Material Forming</i> , 2009 , 2, 873-875	2	2

79	Fabrication of poly(methyl methacrylate) microsphere added pressure-sensitive adhesives and their physical characteristics. <i>Journal of Materials Science</i> , 2010 , 45, 429-434	4.3	2
78	Comment on "Universal yield stress equation for transient response of zeolite based electrorheological fluid". <i>Journal of Colloid and Interface Science</i> , 2010 , 345, 554-5	9.3	2
77	Comment on P reparation and electrorheological properties of polyquin(2,3-b)acridine-12,14(5,7)dione-based suspensions[]Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007 , 295, 288-290	5.1	2
76	Comment on IIwo roles of guest and crosslinked degree on hydrosoluble Ecyclodextrin polymer electrorheological fluidsIby Z. Gao and X. Zhao. <i>Polymer</i> , 2007 , 48, 917-919	3.9	2
75	DNA Dynamics under Turbulent Flow. <i>Macromolecular Symposia</i> , 2007 , 249-250, 472-477	0.8	2
74	Comment on Bynthesis and electrorheological characterization of polymer containing amino and carboxy groups [Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276, 232-234]	5.1	2
73	Rod-climbing characteristics of 宇e2O3 suspended polyisobutylene/polybutene solution. <i>Journal of Applied Polymer Science</i> , 2004 , 92, 1548-1552	2.9	2
72	Scaling functions of polymer-induced turbulent drag reduction focusing on the polymerBolvent interaction. <i>Journal of Applied Polymer Science</i> , 2003 , 88, 1836-1839	2.9	2
71	P-4: Synthesis and Applications of PVP-TiO2 Composite as a Gate Insulator for Organic Thin-Film Transistors. <i>Digest of Technical Papers SID International Symposium</i> , 2005 , 36, 236	0.5	2
70	PREISACH MODEL OF ER FLUIDS CONSIDERING TEMPERATURE VARIATIONS. <i>International Journal of Modern Physics B</i> , 2005 , 19, 1325-1331	1.1	2
69	SYNTHESIS AND ELECTRORHEOLOGY OF PHOSPHORIC ACID DOPED POLYANILINE SUSPENSIONS. <i>International Journal of Modern Physics B</i> , 2005 , 19, 1149-1155	1.1	2
68	Rod-climbing in a particle-suspended polymeric liquid. <i>Journal of Applied Polymer Science</i> , 2000 , 75, 572	- 5 75	2
67	Rod-Climbing characterization of kaolinite suspended polyisobutylene solutions. <i>Polymer Engineering and Science</i> , 1999 , 39, 469-473	2.3	2
66	Drag reducing effects of polymer additives on Coal-Water Mixture in rotating disk system. <i>Journal of Mechanical Science and Technology</i> , 1993 , 7, 48-54		2
65	Pickering emulsion fabricated smart polyaniline/clay composite particles and their tunable rheological response under electric field. <i>Smart Materials and Structures</i> , 2020 , 29, 085022	3.4	2
64	Porous Fe3O4 submicron particles for use in magnetorheological fluids. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 613, 126066	5.1	2
63	Magnetite/Poly(ortho-anisidine) Composite Particles and Their Electrorheological Response. <i>Materials</i> , 2021 , 14,	3.5	2
62	Additive effect of rod-like magnetite/sepiolite composite particles on magnetorheology. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 93, 210-215	6.3	2

(2010-2018)

61	Electroresponsive Polymer-Inorganic Semiconducting Composite (MCTP-FeO) Particles and Their Electrorheology. <i>ACS Omega</i> , 2018 , 3, 17246-17253	3.9	2
60	Hierarchical Architectures of PMMA/MWNT-NH2 Particles: a Material for Enhanced Volatile Organic Compound Sensing Performance. <i>Macromolecular Research</i> , 2018 , 26, 788-793	1.9	2
59	Effect of Magnetic Nanoparticle Additive on Viscoelastic Behaviors of Carbonyl Iron-Based Magnetorheological Suspension. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-4	2	2
58	Application of artificial intelligence to magnetite-based magnetorheological fluids. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 100, 399-409	6.3	2
57	Polyaniline coated ZnFe2O4 microsphere and its electrorheological and magnetorheological response. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 626, 127079	5.1	2
56	Smart Graphene Oxide Based Composite Materials and their Electric and Magnetic Stimuli-response. <i>Procedia Engineering</i> , 2017 , 171, 64-70		1
55	Comment on Bynthesis, characterization and magnetorheological study of 3-aminopropyltriethoxysilane-modified Fe3O4 nanoparticles Smart Materials and Structures, 2019, 28, 088001	3.4	1
54	Facile Synthesis of Solvent Cast Arabic Gum Coated Carbonyl Iron Microspheres and Their Magnetorheological Characteristics. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 3905-3910	1.3	1
53	A simple method of correcting the parallel plate rim shear stress for non-Newtonian behavior 2020 , 32, 165-169		1
52	Operational stability of solution-processed indium-oxide thin-film transistors: Environmental condition and electrical stress. <i>Journal of the Korean Physical Society</i> , 2018 , 72, 151-158	0.6	1
51	Particle interaction energy and hysteresis in polar and non-polar medium based magnetic fluids. Journal of Industrial and Engineering Chemistry, 2018 , 63, 133-138	6.3	1
50	Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models. <i>Jom</i> , 2018 , 70, 906-911	2.1	1
49	Magnetorheology of Snowman-Like Anisotropic Microparticle Added Carbonyl Iron Suspension. <i>IEEE Transactions on Magnetics</i> , 2017 , 53, 1-4	2	1
48	Influence of the surface properties of polymeric insulators on the electrical stability of 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors. <i>Journal of the Korean Physical Society</i> , 2015 , 67, 2124-2130	0.6	1
47	Fabrication and Thermal Characteristics of Liquid Crystalline Copolyester/OMMT Nanocomposite Films. <i>Journal of Macromolecular Science - Physics</i> , 2011 , 50, 614-623	1.4	1
46	Conducting Nanostructured Polymer Materials and their Electrorheological Application. <i>Journal of Polymer Engineering</i> , 2010 , 30,	1.4	1
45	Phase transition of conducting polymer/clay nanocomposite suspensions under an electric field. <i>Philosophical Magazine</i> , 2010 , 90, 2507-2517	1.6	1
44	Effects of Moisture on Pentacene Field-Effect Transistors with Polyvinylpyrrolidone Gate Insulator. <i>Molecular Crystals and Liquid Crystals</i> , 2010 , 531, 14/[314]-20/[320]	0.5	1

43	Electrorheological Fluids: Materials and Rheology 2011 , 285-302		1
42	Comment on Butudy on electrorheological properties of novel polymer-Ce4+ complex <i>Journal of Materials Science</i> , 2009 , 44, 4503-4506	4.3	1
41	Piezoelectric composite forming and its characterization. <i>International Journal of Material Forming</i> , 2009 , 2, 869-871	2	1
40	Synthesis and Electrophoretic Properties of Poly(acrylamide-co-methylmethacrylate) Coated Organic Pigments. <i>Molecular Crystals and Liquid Crystals</i> , 2009 , 499, 305/[627]-310/[632]	0.5	1
39	Real-time observation of electrorheological fluids using synchrotron X-ray imaging. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 313-314, 557-561	5.1	1
38	DNA-Induced Turbulent Drag Reduction and Their Molecular Characteristics. <i>AIP Conference Proceedings</i> , 2006 ,	O	1
37	Effect of Surface Characteristics on Polystyrene/Clay Nanocomposite via Emulsion Polymerization. <i>Solid State Phenomena</i> , 2006 , 111, 187-190	0.4	1
36	PREPARATION AND ELECTRORHEOLOGICAL CHARACTERISTICS OF PANI/MWNT NANOCOMPOSITE 2007 ,		1
35	Comment on Bynthesis and electrorheological effect of PAnBaTiO3 nanocomposite[] <i>Journal of Materials Science</i> , 2006 , 41, 5782-5783	4.3	1
34	ELECTRORHEOLOGY OF MONODISPERSE CORE/SHELL STRUCTURED PARTICLE SUSPENSIONS. International Journal of Modern Physics B, 2005 , 19, 1077-1082	1.1	1
33	Effect of polymergraphene-quantum-dot solution on enhanced oil recovery performance. <i>Journal of Molecular Liquids</i> , 2021 , 118092	6	1
32	Magnetic-stimuli rheological response of soft-magnetic manganese ferrite nanoparticle suspension. <i>Colloid and Polymer Science</i> , 2021 , 299, 865-872	2.4	1
31	Shirasu porous glass membrane processed uniform-sized Fe3O4-embedded polymethylmethacrylate nanoparticles and their tunable rheological response under magnetic field. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 611, 125756	5.1	1
30	Electrorheological Responses of Acid-Hydrolyzed Cellulose Suspensions. <i>Current Smart Materials</i> , 2018 , 3, 58-67	1	1
29	Artificial Neural Network to Forecast Enhanced Oil Recovery Using Hydrolyzed Polyacrylamide in Sandstone and Carbonate Reservoirs. <i>Polymers</i> , 2021 , 13,	4.5	1
28	Drag reduction characteristics of polysaccharide xanthan gum 1998 , 19, 419		1
27	Drag reduction characteristics of polysaccharide xanthan gum 1998 , 19, 419		1
26	Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/poly(vinyl acetate) blends 2001 , 82, 3618		1

(2006-2019)

25	Effects of dispersion state on rheological and electrical characteristics of concentrated multiwalled carbon nanotube suspensions 2019 , 31, 179-186		0
24	Temperature-dependent electrorheology of a suspension based on copolymeric P(NIPAM-co-[AMIm]Cl) colloidal particles. <i>Smart Materials and Structures</i> , 2020 , 29, 124001	3.4	O
23	Effect of drag-reducing polymer on blood flow in microchannels. <i>Colloids and Surfaces B: Biointerfaces</i> , 2022 , 209, 112212	6	О
22	Synthesis of reduced graphene oxide/cobalt ferrite composite particles and their magnetorheological characteristics. <i>AIP Advances</i> , 2021 , 11, 015129	1.5	О
21	Fabrication of Polyindole Coated Zinc Ferrite Particles and Their Dual Rheological Response under Magnetic and Electric Fields. <i>IEEE Transactions on Magnetics</i> , 2021 , 1-1	2	0
20	Fabrication and Shear Response of Conducting Polymer-Coated Zinc Ferrite Particles under Magnetic/Electric Field. <i>IEEE Transactions on Magnetics</i> , 2021 , 1-1	2	O
19	Magnetized solvents: Characteristics and various applications. <i>Journal of Molecular Liquids</i> , 2021 , 335, 116167	6	O
18	Ionic-liquid-modified TiO2 spheres and their enhanced electrorheological responses. <i>Journal of Molecular Liquids</i> , 2021 , 338, 116696	6	O
17	Magnetite-embedded poly (2-methylaniline) hybrid particles and their smart responses under magnetic and electric fields. <i>Journal of Molecular Liquids</i> , 2021 , 340, 117294	6	0
16	Enhanced Magnetorheological Response of Carbonyl Iron Suspension with Added ZnFe2O4 Particles. <i>IEEE Transactions on Magnetics</i> , 2021 , 1-1	2	O
15	Remote-controllable, tough, ultrastretchable, and magneto-sensitive nanocomposite hydrogels with homogeneous nanoparticle dispersion as biomedical actuators, and their tuned structure, properties, and performances. <i>Composites Part B: Engineering</i> , 2022 , 236, 109802	10	0
14	Xanthan gum-added natural surfactant solution of Chuback: A green and clean technique for enhanced oil recovery. <i>Journal of Molecular Liquids</i> , 2022 , 354, 118909	6	O
13	Semiconducting Polymer Blends: Spontaneous Phase Separation of Poly(3-hexylthiophene)s with Different Regioregularity for a Stretchable Semiconducting Film (Adv. Funct. Mater. 35/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970244	15.6	
12	Surface modification of inorganic black particles for electrophoretic display. <i>Journal of the Korean Physical Society</i> , 2014 , 65, 1520-1523	0.6	
11	Magnetorheological characteristics of carbon nanotube wrapped carbonyl iron particles. <i>Journal of Physics: Conference Series</i> , 2009 , 149, 012047	0.3	
10	Effect of Polymer Encapsulation on Electrophoretic Property of Organic Pigment. <i>Molecular Crystals and Liquid Crystals</i> , 2008 , 492, 257/[621]-261/[625]	0.5	
9	Encapsulation of Carbonyl Iron Particles with Poly(Vinyl Butyral) and their Magnetorheology. <i>Key Engineering Materials</i> , 2007 , 334-335, 193-196	0.4	
8	Comment on B reparation of high performance electrorheological fluids with coke-like particles from FCC slurry conversion [Fuel, 2006 , 85, 2680-2682	7.1	

7	Comment on "An enhanced polarization mechanism for the metal cations modified amorphous TiO2 based electrorheological materials" by Qing Wu, Bin Yuan Zhao, Chen Fang and Ke Ao Hu. <i>European Physical Journal E</i> , 2006 , 21, 387-9	1.5
6	An overview on the enhanced gas condensate recovery with novel and green methods <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1
5	Poly(N-methylaniline)/magnetite microsphere and its electrical and magnetic dual responses. <i>Polymer</i> , 2022 , 240, 124492	3.9
4	Poly(4-vinylphenol-co-methyl methacrylate)/Hafnium Oxide Nanocomposite Gate Insulators for Organic Thin-Film Transistors. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 4188-4192	1.3
3	Fabrication and Magnetorheological Characteristics of Core-shell Typed Poly(2-methylaniline)/Carbonyl Iron Microspheres. <i>IEEE Transactions on Magnetics</i> , 2021 , 1-1	2
2	Iconography connecting art and rheology based on Dal paintings 2018, 30, 317-321	
1	Monodisperse semiconducting poly(N-methylaniline) microspheres and their electrorheological response. <i>Smart Materials and Structures</i> , 2021 , 30, 085045	3.4