Etienne G Danchin

List of Publications by Citations

Source: https://exaly.com/author-pdf/9166637/etienne-g-danchin-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

93
papers
9,949
citations
h-index
99
g-index

100
ext. papers
ext. citations
8.6
avg, IF
L-index

#	Paper	IF	Citations
93	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. <i>Nature</i> , 2010 , 464, 367	-7530.4	1085
92	Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). <i>Nature Biotechnology</i> , 2008 , 26, 553-60	44.5	920
91	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. <i>Nature Biotechnology</i> , 2007 , 25, 221-31	44.5	889
90	Top 10 plant-parasitic nematodes in molecular plant pathology. <i>Molecular Plant Pathology</i> , 2013 , 14, 946-61	5.7	836
89	The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. <i>Nature</i> , 2008 , 452, 88-92	50.4	823
88	Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. <i>Nature Biotechnology</i> , 2008 , 26, 909-15	44.5	790
87	Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. <i>PLoS Genetics</i> , 2011 , 7, e1002230	6	659
86	Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. <i>Protein Engineering, Design and Selection</i> , 2006 , 19, 555-	-6 ¹ 2 ⁹	430
85	The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. <i>PLoS Genetics</i> , 2009 , 5, e1000618	6	329
84	Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. <i>Nature</i> , 2013 , 500, 453-7	50.4	274
83	Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 17651-6	11.5	244
82	The genome sequence of the model ascomycete fungus Podospora anserina. <i>Genome Biology</i> , 2008 , 9, R77	18.3	237
81	High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. <i>Molecular Ecology</i> , 2004 , 13, 1693-70	o ^{5.7}	151
80	Horizontal gene transfer in nematodes: a catalyst for plant parasitism?. <i>Molecular Plant-Microbe Interactions</i> , 2011 , 24, 879-87	3.6	124
79	Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. <i>Biotechnology Letters</i> , 2008 , 30, 387-96	3	119
78	A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. <i>New Phytologist</i> , 2011 , 189, 580-92	9.8	115
77	FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform. <i>BMC Bioinformatics</i> , 2005 , 6, 198	3.6	103

(2004-2016)

76	The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. <i>Genome Biology</i> , 2016 , 17, 124	18.3	95	
75	Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. <i>Annual Review of Phytopathology</i> , 2013 , 51, 203-20	10.8	92	
74	The genomes of root-knot nematodes. Annual Review of Phytopathology, 2009, 47, 333-51	10.8	91	
73	The plant apoplasm is an important recipient compartment for nematode secreted proteins. Journal of Experimental Botany, 2011 , 62, 1241-53	7	88	
72	Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. <i>PLoS Genetics</i> , 2017 , 13, e1006777	6	87	
71	An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. <i>Plant, Cell and Environment</i> , 2011 , 34, 1944-57	8.4	74	
70	Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. <i>PLoS Pathogens</i> , 2013 , 9, e1003745	7.6	66	
69	A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei. <i>New Phytologist</i> , 2012 , 194, 924-931	9.8	64	
68	Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. <i>Fungal Genetics and Biology</i> , 2014 , 72, 168	8- 3 181	62	
67	Identifying discriminative classification-based motifs in biological sequences. <i>Bioinformatics</i> , 2011 , 27, 1231-8	7.2	55	
66	Signatures of adaptation to plant parasitism in nematode genomes. <i>Parasitology</i> , 2015 , 142 Suppl 1, S71-84	2.7	50	
65	The major histocompatibility complex origin. <i>Immunological Reviews</i> , 2004 , 198, 216-32	11.3	47	
64	Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. <i>PLoS ONE</i> , 2012 , 7, e50875	3.7	46	
63	Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. <i>BMC Genomics</i> , 2010 , 11, 598	4.5	44	
62	Parasitic success without sex The nematode experience. <i>Journal of Evolutionary Biology</i> , 2014 , 27, 1323	3- 3 3 ₃	42	
61	Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects. <i>Scientific Reports</i> , 2016 , 6, 26388	4.9	38	
60	Horizontal Gene Transfer from Bacteria Has Enabled the Plant-Parasitic Nematode Globodera pallida to Feed on Host-Derived Sucrose. <i>Molecular Biology and Evolution</i> , 2016 , 33, 1571-9	8.3	38	
59	Towards the reconstruction of the bilaterian ancestral pre-MHC region. <i>Trends in Genetics</i> , 2004 , 20, 58	7 8 9\$	36	

58	The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. <i>Genome Biology and Evolution</i> , 2014 , 6, 2181-94	3.9	35
57	Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks. <i>Frontiers in Plant Science</i> , 2016 , 7, 794	6.2	34
56	Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube?. BMC Biology, 2016, 14, 101	7.3	32
55	A rigorous method for multigenic families ufunctional annotation: the peptidyl arginine deiminase (PADs) proteins family example. <i>BMC Genomics</i> , 2005 , 6, 153	4.5	28
54	Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. <i>Plant Molecular Biology</i> , 2017 , 94, 79-96	4.6	27
53	Conceptual bases for quantifying the role of the environment on gene evolution: the participation of positive selection and neutral evolution. <i>Biological Reviews</i> , 2007 , 82, 551-72	13.5	26
52	Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals. <i>BMC Evolutionary Biology</i> , 2006 , 6, 5	3	26
51	Gene copy number variations as signatures of adaptive evolution in the parthenogenetic, plant-parasitic nematode Meloidogyne incognita. <i>Molecular Ecology</i> , 2019 , 28, 2559-2572	5.7	25
50	Prospects of herbivore egg-killing plant defenses for sustainable crop protection. <i>Ecology and Evolution</i> , 2016 , 6, 6906-6918	2.8	25
49	Lateral gene transfers have polished animal genomes: lessons from nematodes. <i>Frontiers in Cellular and Infection Microbiology</i> , 2012 , 2, 27	5.9	25
48	Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life. <i>Genes</i> , 2017 , 8,	4.2	23
47	Conservation of the MHC-like region throughout evolution. <i>Immunogenetics</i> , 2003 , 55, 141-148	3.2	22
46	Data-mining of the Meloidogyne incognita degradome and comparative analysis of proteases in nematodes. <i>Genomics</i> , 2011 , 97, 29-36	4.3	21
45	Where do animal alpha-amylases come from? An interkingdom trip. FEBS Letters, 2007, 581, 3927-35	3.8	21
44	Evolution of the proto-MHC ancestral region: more evidence for the plesiomorphic organisation of human chromosome 9q34 region. <i>Immunogenetics</i> , 2003 , 55, 429-36	3.2	21
43	Functional diversification of horizontally acquired glycoside hydrolase family 45 (GH45) proteins in Phytophaga beetles. <i>BMC Evolutionary Biology</i> , 2019 , 19, 100	3	19
42	What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals. <i>Mobile Genetic Elements</i> , 2011 , 1, 269-273		19
41	Comparative root transcriptome of wild Arachis reveals NBS-LRR genes related to nematode resistance. <i>BMC Plant Biology</i> , 2018 , 18, 159	5.3	17

(2018-2004)

40	Statistical evidence for a more than 800-million-year-old evolutionarily conserved genomic region in our genome. <i>Journal of Molecular Evolution</i> , 2004 , 59, 587-97	3.1	16
39	The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes. <i>Genes</i> , 2017 , 8,	4.2	14
38	Single pH buffer refolding screen for protein from inclusion bodies. <i>Protein Expression and Purification</i> , 2012 , 82, 352-9	2	14
37	Genome sequence of the root-knot nematode. <i>Journal of Nematology</i> , 2020 , 52, 1-5	1.1	14
36	Population genomics supports clonal reproduction and multiple independent gains and losses of parasitic abilities in the most devastating nematode pest. <i>Evolutionary Applications</i> , 2020 , 13, 442-457	4.8	14
35	Genome structure and content of the rice root-knot nematode (). Ecology and Evolution, 2020, 10, 1100	6218102	2113
34	Contrasting Effects of Wild Dehydrin Under Abiotic and Biotic Stresses. <i>Frontiers in Plant Science</i> , 2019 , 10, 497	6.2	12
33	Eukaryote to gut bacteria transfer of a glycoside hydrolase gene essential for starch breakdown in plants. <i>Mobile Genetic Elements</i> , 2012 , 2, 81-87		12
32	Genome assembly and annotation of Meloidogyne enterolobii, an emerging parthenogenetic root-knot nematode. <i>Scientific Data</i> , 2020 , 7, 324	8.2	12
31	Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses. <i>Scientific Reports</i> , 2020 , 10, 15258	4.9	9
30	Comparative Genomics Reveals Novel Target Genes towards Specific Control of Plant-Parasitic Nematodes. <i>Genes</i> , 2020 , 11,	4.2	9
29	Genomic Perspectives on the Long-Term Absence of Sexual Reproduction in Animals 2011 , 223-242		8
28	CASSIOPE: an expert system for conserved regions searches. <i>BMC Bioinformatics</i> , 2009 , 10, 284	3.6	8
27	Signatures of the Evolution of Parthenogenesis and Cryptobiosis in the Genomes of Panagrolaimid Nematodes. <i>IScience</i> , 2019 , 21, 587-602	6.1	8
26	Cross-Kingdom Analysis of Diversity, Evolutionary History, and Site Selection within the Eukaryotic Macrophage Migration Inhibitory Factor Superfamily. <i>Genes</i> , 2019 , 10,	4.2	7
25	Homologous chromosomes in asexual rotifer Adineta vaga suggest automixis		7
24	Dissecting protein domain variability in the core RNA interference machinery of five insect orders. <i>RNA Biology</i> , 2021 , 18, 1653-1681	4.8	6
23	Genome-wide expert annotation of the epigenetic machinery of the plant-parasitic nematodes Meloidogyne spp., with a focus on the asexually reproducing species. <i>BMC Genomics</i> , 2018 , 19, 321	4.5	6

22	Signatures of the evolution of parthenogenesis and cryptobiosis in panagrolaimid nematodes		6
21	Evolution of major histocompatibility complex by "en bloc" duplication before mammalian radiation. <i>Immunogenetics</i> , 2008 , 60, 423-38	3.2	5
20	Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer. <i>Science Advances</i> , 2021 , 7, eabg4216	14.3	5
19	Genome Expression Dynamics Reveal the Parasitism Regulatory Landscape of the Root-Knot Nematode and a Promoter Motif Associated with Effector Genes. <i>Genes</i> , 2021 , 12,	4.2	5
18	Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. <i>Molecular Genetics and Genomics</i> , 2020 , 295, 1063-1078	3.1	4
17	A Chemosensory GPCR as a Potential Target to Control the Root-Knot Nematode Parasitism in Plants. <i>Molecules</i> , 2019 , 24,	4.8	4
16	The use of evolutionary biology concepts for genome annotation. <i>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution</i> , 2007 , 308, 26-36	1.8	4
15	Recent Advances in Population Genomics of Plant-Parasitic Nematodes. <i>Phytopathology</i> , 2021 , 111, 40-	4§ .8	4
14	Carbohydrate-Active Enzymes Database: Principles and Classification of Glycosyltransferases89-118		3
13	Transposable Elements are an evolutionary force shaping genomic plasticity in the parthenogenetic root-knot nematode Meloidogyne incognita		3
12	Movements of transposable elements contribute to the genomic plasticity and species diversification in an asexually reproducing nematode pest. <i>Evolutionary Applications</i> , 2021 , 14, 1844-186	5 6 .8	3
11	Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life		2
10	Population genomics supports clonal reproduction and multiple gains and losses of parasitic abilities in the most devastating nematode plant pest		2
9	The polyploid genome of the mitotic parthenogenetic root-knot nematodeMeloidogyne enterolobii		2
8	Chromatin landscape dynamics in development of the plant parasitic nematode Meloidogyne incognita		2
7	Computational reconstruction of ancestral genomic regions from evolutionarily conserved gene clusters 2007 , 139-150		1
6	The Genome Sequence of Meloidogyne incognita Unveils Mechanisms of Adaptation to Plant-Parasitism in Metazoa 2009 , 287-302		1
5	Peculiar hybrid genomes of devastating plant pests promote plasticity in the absence of sex and meios	S	1

LIST OF PUBLICATIONS

4	Genome expression dynamics reveals parasitism regulatory landscape of the root-knot nematode Meloidogyne incognita and a promoter motif associated with effector genes	1
3	Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis. <i>PLoS Pathogens</i> , 2021 , 17, e1010036	7.6
2	Teratosphaeria stem canker disease on Eucalypt in Italy. <i>European Journal of Plant Pathology</i> , 2019 , 153, 503-515	2.1
1	Chromatin Landscape Dynamics in the Early Development of the Plant Parasitic Nematode Meloidogyne incognita <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 765690	5:7