List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9165993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cosmology and Fundamental Physics with the Euclid Satellite. Living Reviews in Relativity, 2013, 16, 6.	8.2	683
2	Cosmology and fundamental physics with the Euclid satellite. Living Reviews in Relativity, 2018, 21, 2.	8.2	602
3	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A191.	2.1	194
4	Hydrodynamical <i>N</i> -body simulations of coupled dark energy cosmologies. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1684-1702.	1.6	185
5	Quintessence cosmologies with a growing matter component. Physical Review D, 2008, 78, .	1.6	146
6	Modified-Gravity-gadget: a new code for cosmological hydrodynamical simulations of modified gravity models. Monthly Notices of the Royal Astronomical Society, 2013, 436, 348-360.	1.6	135
7	Modified gravity <i>N</i> -body code comparison project. Monthly Notices of the Royal Astronomical Society, 2015, 454, 4208-4234.	1.6	104
8	Lyman α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3227-3243.	1.6	100
9	Cosmic degeneracies – I. Joint N-body simulations of modified gravity and massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2014, 440, 75-88.	1.6	94
10	Time-dependent couplings in the dark sector: from background evolution to non-linear structure formation. Monthly Notices of the Royal Astronomical Society, 2011, 411, 1077-1103.	1.6	91
11	The codecs project: a publicly available suite of cosmological N-body simulations for interacting dark energy modelsâ~ Monthly Notices of the Royal Astronomical Society, 2012, 422, 1028-1044.	1.6	73
12	The stellar-to-halo mass relation over the past 12 Gyr. Astronomy and Astrophysics, 2020, 634, A135.	2.1	73
13	<i>Euclid</i> preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2840-2869.	1.6	62
14	Clarifying the effects of interacting dark energy on linear and non-linear structure formation processes. Monthly Notices of the Royal Astronomical Society, 2011, 414, 116-128.	1.6	61
15	Inflation with violation of the null energy condition. Physical Review D, 2005, 72, .	1.6	59
16	AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3935-3951.	1.6	58
17	On the linearity of tracer bias around voids. Monthly Notices of the Royal Astronomical Society, 2017, 469, 787-799.	1.6	52
18	Cosmic voids in coupled dark energy cosmologies: the impact of halo bias. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3075-3085.	1.6	51

#	Article	IF	CITATIONS
19	Early massive clusters and the bouncing coupled dark energy. Monthly Notices of the Royal Astronomical Society, 2012, 420, 430-440.	1.6	48
20	Breaking degeneracies in modified gravity with higher (than 2nd) order weak-lensing statistics. Astronomy and Astrophysics, 2018, 619, A38.	2.1	48
21	High-z massive clusters as a test for dynamical coupled dark energy. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 412, L1-L5.	1.2	41
22	Clustering and redshift-space distortions in interacting dark energy cosmologies. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2377-2386.	1.6	41
23	Weak lensing light-cones in modified gravity simulations with and without massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2813-2828.	1.6	39
24	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 644, A31.	2.1	39
25	The halo mass function in interacting dark energy models. Monthly Notices of the Royal Astronomical Society, 2012, 424, 993-1005.	1.6	37
26	Cosmological exploitation of the size function of cosmic voids identified in the distribution of biased tracers. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3526-3540.	1.6	35
27	Dark Energy simulations. Physics of the Dark Universe, 2012, 1, 162-193.	1.8	34
28	The impact of coupled dark energy cosmologies on the high-redshift intergalactic medium. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L89-L93.	1.2	32
29	Emulators for the nonlinear matter power spectrum beyond $\hat{ ho}$ CDM. Physical Review D, 2019, 100, .	1.6	32
30	Cosmic voids in modified gravity models with massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5021-5038.	1.6	32
31	Scaling relations of fuzzy dark matter haloes – I. Individual systems in their cosmological environment. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1539-1556.	1.6	31
32	Multiple dark matter as a selfâ€regulating mechanism for dark sector interactions. Annalen Der Physik, 2012, 524, 602-617.	0.9	30
33	Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 004-004.	1.9	30
34	The non-linear matter power spectrum in warm dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	29
35	Distinguishing standard and modified gravity cosmologies with machine learning. Physical Review D, 2019, 100, .	1.6	29
36	Imprint of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo) (stre<="" 0="" 10="" 50="" 57="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>tchy₅6'false</td><td>e">}₹/mml:mc</td></mml:mo)></mml:mo </mml:mrow></mml:math>	tch y ₅6'false	e"> } ₹/mml:mc

Physical Review D, 2016, 93, .

MARCO BALDI

#	Article	IF	CITATIONS
37	On the dissection of degenerate cosmologies with machine learning. Monthly Notices of the Royal Astronomical Society, 2019, 487, 104-122.	1.6	27
38	THE EFFECT OF COUPLED DARK ENERGY ON THE ALIGNMENT BETWEEN DARK MATTER AND GALAXY DISTRIBUTIONS IN CLUSTERS. Astrophysical Journal, 2011, 732, 112.	1.6	26
39	Nuw CDM cosmology from the weak-lensing convergence PDF. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2886-2902.	1.6	26
40	<i>Euclid</i> : Forecasts from redshift-space distortions and the Alcock–Paczynski test with cosmic voids. Astronomy and Astrophysics, 2022, 658, A20.	2.1	25
41	Constraints on interacting Dark Energy models from galaxy rotation curves. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 014-014.	1.9	24
42	CAN COUPLED DARK ENERGY SPEED UP THE BULLET CLUSTER?. Astrophysical Journal, 2012, 747, 45.	1.6	24
43	Joint halo-mass function for modified gravity and massive neutrinos – I. Simulations and cosmological forecasts. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3927-3941.	1.6	24
44	Characterizing dark interactions with the halo mass accretion history and structural properties. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2982-2998.	1.6	23
45	Disentangling dark sector models using weak lensing statistics. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2757-2772.	1.6	23
46	Multiple lensing of the cosmic microwave background anisotropies. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 049-049.	1.9	23
47	IDENTIFICATION OF GALAXY CLUSTER SUBSTRUCTURES WITH THE CAUSTIC METHOD. Astrophysical Journal, 2015, 810, 37.	1.6	22
48	THE MASS ACCRETION RATE OF GALAXY CLUSTERS: A MEASURABLE QUANTITY. Astrophysical Journal, 2016, 818, 188.	1.6	22
49	Oscillating non-linear large-scale structures in growing neutrino quintessence. Monthly Notices of the Royal Astronomical Society, 2011, 418, 214-229.	1.6	21
50	Weak lensing predictions for coupled dark energy cosmologies at non-linear scales. Monthly Notices of the Royal Astronomical Society, 2012, 422, 3546-3553.	1.6	21
51	Structure formation in multiple dark matter cosmologies with long-range scalar interactions. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2074-2084.	1.6	21
52	Simulating momentum exchange in the dark sector. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2239-2249.	1.6	21
53	Fitting and forecasting coupled dark energy in the non-linear regime. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 045-045.	1.9	21
54	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2022, 657, A91.	2.1	21

#	Article	IF	CITATIONS
55	Cosmological direct detection of dark energy: Non-linear structure formation signatures of dark energy scattering with visible matter. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1885-1905.	1.6	21
56	Structure formation simulations with momentum exchange: alleviating tensions between high-redshift and low-redshift cosmological probes. Monthly Notices of the Royal Astronomical Society, 2017, 465, 653-666.	1.6	20
57	Cosmic voids detection without density measurements. Monthly Notices of the Royal Astronomical Society, 2015, 448, 642-653.	1.6	19
58	Fast weak-lensing simulations with halo model. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3574-3590.	1.6	18
59	Cosmic degeneracies – II. Structure formation in joint simulations of warm dark matter and f(R) gravity. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3226-3240.	1.6	18
60	Weak-lensing peaks in simulated light cones: investigating the coupling between dark matter and dark energy. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5436-5448.	1.6	18
61	Cosmic voids uncovered – first-order statistics of depressions in the biased density field. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5075-5084.	1.6	18
62	<i>Euclid</i> : Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data. Astronomy and Astrophysics, 2021, 654, A148.	2.1	18
63	Disentangling interacting dark energy cosmologies with the three-point correlation function. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2874-2886.	1.6	17
64	Ray-tracing simulations of coupled dark energy models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 858-874.	1.6	17
65	Linear perturbation constraints on multi-coupled dark energy. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 045-045.	1.9	16
66	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 635, A139.	2.1	15
67	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A192.	2.1	15
68	Supernova constraints on multi-coupled dark energy. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 042-042.	1.9	13
69	Effects of coupled dark energy on the Milky Way and its satellites. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2490-2501.	1.6	13
70	Clustering and redshift-space distortions in modified gravity models with massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1987-2000.	1.6	13
71	On the road to per cent accuracy – V. The non-linear power spectrum beyond ĥCDM with massive neutrinos and baryonic feedback. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2479-2491.	1.6	13
72	Simulations of structure formation in interacting dark energy cosmologies. Nuclear Physics, Section B, Proceedings Supplements, 2009, 194, 178-184.	0.5	12

#	Article	IF	CITATIONS
73	The kinematic Sunyaev–Zel'dovich effect of the large-scale structureÂ(I): dependence on neutrino mass. Monthly Notices of the Royal Astronomical Society, 0, , stx170.	1.6	12
74	Modelling non-linear effects of dark energy. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 032-032.	1.9	12
75	Nonlinear growing neutrino cosmology. Physical Review D, 2016, 93, .	1.6	11
76	Breaking cosmic degeneracies: Disentangling neutrinos and modified gravity with kinematic information. Astronomy and Astrophysics, 2019, 629, A46.	2.1	11
77	Mass accretion rates of clusters of galaxies: CIRS and HeCS. Astronomy and Astrophysics, 2021, 646, A105.	2.1	11
78	Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3. Astrophysical Journal, Supplement Series, 2021, 256, 9.	3.0	11
79	The effect of interacting dark energy on local measurements of the Hubble constant. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 035-035.	1.9	10
80	Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters. Astrophysical Journal, 2018, 860, 118.	1.6	9
81	The kinematic Sunyaev–Zel'dovich effect of the large-scale structure (II): the effect of modified gravity. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2497-2506.	1.6	9
82	On the road toÂper cent accuracy VI: the non-linear power spectrum for interacting dark energy with baryonic feedback and massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3691-3702.	1.6	9
83	Cold dark matter halos in Multi-coupled Dark Energy cosmologies: Structural and statistical properties. Physics of the Dark Universe, 2014, 3, 4-17.	1.8	8
84	Dark matter halo sparsity of modified gravity scenarios. Physical Review D, 2020, 102, .	1.6	7
85	Fast numerical method to generate halo catalogues in modified gravity (part I): second-order Lagrangian perturbation theory. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1153-1164.	1.6	7
86	Semi-analytic galaxy formation in coupled dark energy cosmologies. Monthly Notices of the Royal Astronomical Society, 2015, 452, 978-985.	1.6	6
87	Cosmic degeneracies III: N-body simulations of interacting dark energy with non-Gaussian initial conditions. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2933-2945.	1.6	5
88	Breaking the Dark Degeneracy with the Drifting Coefficient of the Field Cluster Mass Function. Astrophysical Journal, 2020, 904, 93.	1.6	3
89	Testing the reliability of fast methods for weak lensing simulations: wl-moka on pinocchio. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1307-1324.	1.6	2
90	Dynamic zoom simulations: A fast, adaptive algorithm for simulating light-cones. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2685-2700.	1.6	2

#	Article	IF	CITATIONS
91	<i>Euclid</i> : Constraining ensemble photometric redshift distributions with stacked spectroscopy. Astronomy and Astrophysics, 2022, 660, A9.	2.1	2
92	Behind the screen. Nature Astronomy, 2019, 3, 887-888.	4.2	1