Ali Mansour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9165841/publications.pdf

Version: 2024-02-01

304743 243625 2,351 122 22 44 citations h-index g-index papers 124 124 124 1838 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Real & Simulated QPSK Up-Converted Signals by a Sampling Method Using a Cascaded MZMs Link. Photonics, 2022, 9, 34.	2.0	5
2	Spectrum Sensing by Cepstral Covariance Detection. IEEE Communications Letters, 2022, 26, 1323-1327.	4.1	O
3	Simultaneous Up-Conversion Based on a Co- & Sounter-Directions SOA-MZI Sampling Mixer with Standard & Standard	2.0	6
4	Statistical intrusion detection and eavesdropping in quantum channels with coupling: multiple-preparation and single-preparation methods. Quantum Information Processing, 2022, 21, 1.	2.2	1
5	A Survey of NOMA for VLC Systems: Research Challenges and Future Trends. Sensors, 2022, 22, 1395.	3.8	38
6	Effects of Atmospheric Turbulence on Optical Wireless Communication in NEOM Smart City. Photonics, 2022, 9, 262.	2.0	7
7	LoRaCog: A Protocol for Cognitive Radio-Based LoRa Network. Sensors, 2022, 22, 3885.	3.8	4
8	A generalized recursive Vogler algorithm for multiple bridged knife-edge diffraction. IEEE Transactions on Antennas and Propagation, 2022, , $1\text{-}1$.	5.1	0
9	Frequency Alteration Built on an Electro-Optical Sampling SOA–MZI Using a Differential Modulation Schema. Optics, 2022, 3, 225-233.	1.2	4
10	A Sensor-Based Data Analytics for Patient Monitoring in Connected Healthcare Applications. IEEE Sensors Journal, 2021, 21, 974-984.	4.7	36
11	Insights into portability issues of FM3TR waveform. Analog Integrated Circuits and Signal Processing, 2021, 106, 45-57.	1.4	О
12	Coagulopathy as a Surrogate of Severity of Injury in Penetrating Brain Injury. Journal of Neurotrauma, 2021, 38, 1821-1826.	3.4	5
13	On the Proof of Recursive Vogler Algorithm for Multiple Knife-Edge Diffraction. IEEE Transactions on Antennas and Propagation, 2021, 69, 3617-3622.	5.1	4
14	A Multi-Stage Parallel LMS Structure and its Stability Analysis Using Transfer Function Approximation. , $2021, $, .		2
15	Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture. , 2021, , .		2
16	A Deep Neural Network Model for Hybrid Spectrum Sensing in Cognitive Radio. Wireless Personal Communications, 2021, 118, 281-299.	2.7	22
17	ESco: Eligibility score-based strategy for sensors selection in CR-IoT: Application to LoRaWAN. Internet of Things (Netherlands), 2021, 13, 100362.	7.7	5
18	Spectrum Sensing for Cognitive Radio: Recent Advances and Future Challenge. Sensors, 2021, 21, 2408.	3.8	90

#	Article	IF	Citations
19	Stability Analysis of the RC-PLMS Adaptive Beamformer Using a Simple Transfer Function Approximation. , 2021, , .		O
20	Cloud-connected flying edge computing for smart agriculture. Peer-to-Peer Networking and Applications, 2021, 14, 3405-3415.	3.9	22
21	Civilian Firearm-Inflicted Brain Injury: Coagulopathy, Vascular Injuries, and Triage. Current Neurology and Neuroscience Reports, 2021, 21, 47.	4.2	2
22	Energy and Performance Analysis of Lossless Compression Algorithms for Wireless EMG Sensors. Sensors, 2021, 21, 5160.	3.8	10
23	Simultaneous up- and down-frequency mixing based on a cascaded SOA-MZIs link. Applied Optics, 2021, 60, 8336.	1.8	12
24	OFDM signal down frequency conversion based on a SOA-MZI sampling mixer using differential modulation and switching architectures. Optik, 2021, 245, 167761.	2.9	12
25	In-Network Data Aggregation for Ad Hoc Clustered Cognitive Radio Wireless Sensor Network. Sensors, 2021, 21, 6741.	3.8	6
26	Users Selection and Resource Allocation in Intelligent Reflecting Surfaces Assisted Cellular Networks., 2021,,.		1
27	Estimation of the Primary User's Beam Width Using Cooperative Secondary Users. , 2021, , .		1
28	Survey on machine learning applied to medical image analysis. , 2021, , .		1
29	Case Report: Management of Traumatic Carotid-Cavernous Fistulas in the Acute Setting of Penetrating Brain Injury. Frontiers in Neurology, 2021, 12, 715955.	2.4	2
30	A Modified RC-pLMS Adaptive Beamformer for Secure Digital Communication., 2021,,.		0
31	A Cepstrum-Based Spectrum Sensing Approach for Detecting Spread Spectrum Signals. Journal of Physics: Conference Series, 2021, 2128, 012003.	0.4	0
32	Management of civilians with penetrating brain injury: A systematic review. Journal of Critical Care, 2020, 56, 159-166.	2.2	29
33	Simultaneous Transmitting–Receiving–Sensing for OFDM-based Full-Duplex Cognitive Radio. Physical Communication, 2020, 39, 100987.	2.1	6
34	A Wideband Spectrum Sensing Approach for Cognitive Radios Based on Cepstral Analysis. IEEE Open Journal of the Communications Society, 2020, 1, 863-888.	6.9	3
35	VoglerNet: multiple knife-edge diffraction using deep neural network. , 2020, , .		4
36	Pulse parity modulation for impulse radio UWB transmission based on non-coherent detection. Physical Communication, 2020, 40, 101061.	2.1	4

#	Article	IF	CITATIONS
37	Blind separation of ECG signals from noisy signals affected by electrosurgical artifacts. Analog Integrated Circuits and Signal Processing, 2020, 104, 191-204.	1.4	9
38	A Hadoop-Based Platform for Patient Classification and Disease Diagnosis in Healthcare Applications. Sensors, 2020, 20, 1931.	3.8	19
39	Distributed algorithm under cooperative or competitive priority users in cognitive networks. Eurasip Journal on Wireless Communications and Networking, 2020, 2020, .	2.4	3
40	Dynamic Decision-Making Process in the Opportunistic Spectrum Access. Advances in Science, Technology and Engineering Systems, 2020, 5, 223-233.	0.5	3
41	A Pipelined Reduced Complexity Two-Stages Parallel LMS Structure for Adaptive Beamforming. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 5079-5091.	5 . 4	12
42	V2V Influence on M2M and H2H Traffics During Emergency Scenarios. Advances in Mechatronics and Mechanical Engineering, 2020, , 93-134.	1.0	1
43	Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access, 2019, 7, 129551-129583.	4.2	557
44	Affordable Broad Agile Farming System for Rural and Remote Area. IEEE Access, 2019, 7, 127098-127116.	4.2	14
45	Adaptive Strategy and Decision Making Model for Sensing-Based Network Applications. , 2019, , .		5
46	On Optimizing the Performance of Impulse Radio Pulse Position Modulation Based on UWB Gaussian Pulse Derivatives. , 2019, , .		4
47	Novel Sensing Mechanism for Full-Duplex Secondary Users in Cognitive Radio. , 2019, , .		1
48	A closed-form expression of the BER of reconfigurable antenna aided Space Shift Keying (SSK)., 2019,,.		1
49	Low Complexity Robust Adaptive Beamformer Based On Parallel RLMS and Kalman RLMS., 2019, , .		9
50	Distributed Algorithm to Learn OSA Channels Availability and Enhance the Transmission Rate of Secondary Users. , 2019, , .		3
51	ON-IN: An On-Node and In-Node Based Mechanism for Big Data Collection in Large-Scale Sensor Networks. , 2019, , .		4
52	Design and Evaluation of a Wireless Electrocardiogram Monitor in an Operating Room. Anesthesia and Analgesia, 2019, 129, 991-996.	2.2	2
53	Fusion of Swath Bathymetric Data: Application to AUV Rapid Environment Assessment. IEEE Journal of Oceanic Engineering, 2019, 44, 111-120.	3.8	13
54	All-Powerful Learning Algorithm for the Priority Access in Cognitive Network. , 2019, , .		3

#	Article	IF	Citations
55	Unsupervised clustering of DVT Ultrasound Images using High Order Statistics. , 2018, , .		O
56	Hardware-in-the-Loop Simulation Applied to AUV Control. , 2018, , .		1
57	CTMC Modeling for M2M/H2H Coexistence in a NB-IoT Adaptive eNodeB., 2018,,.		3
58	Blind Elimination of Electrical Artifacts Caused by the Electrosurgical Units (ESU) for ECG Signals. , 2018, , .		1
59	CTMC modelling for H2H/M2M coexistence in LTEâ€A/LTEâ€M networks. Journal of Engineering, 2018, 2018, 1954-1962.	1.1	5
60	Blind Spectrum Sensing Based on Recurrence Quantification Analysis in the Context of Cognitive Radio. , $2018, , .$		2
61	UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring. Sensors, 2018, 18, 555.	3.8	63
62	Cancelation of LNA distortions in inâ€band fullâ€duplex systems. Transactions on Emerging Telecommunications Technologies, 2018, 29, e3426.	3.9	3
63	New challenges in wireless and free space optical communications. Optics and Lasers in Engineering, 2017, 89, 95-108.	3.8	152
64	Spectrum sensing based on cumulative power spectral density. Eurasip Journal on Advances in Signal Processing, 2017, 2017, .	1.7	11
65	Spectrum Sensing for Half and Full-Duplex Cognitive Radio. Signals and Communication Technology, 2017, , 15-50.	0.5	9
66	LTE-M adaptive eNodeB for emergency scenarios. , 2017, , .		4
67	Analytical performance analysis for blind quantum source separation with time-varying coupling. , 2017, , .		1
68	Deep venous thrombus characterization: ultrasonography, elastography and scattering operator. Advances in Science, Technology and Engineering Systems, 2017, 2, 48-59.	0.5	4
69	Spectrum Sensing enhancement using Principal Component Analysis. , 2016, , .		5
70	Blind detection of cyclostationary features in the context of Cognitive Radio. , 2016, , .		5
71	Relay selection for full-duplex FSO relays over turbulent channels. , 2016, , .		5
72	Automatic clustering for MRI images, application on perfusion MRI of brain. , 2016, , .		0

#	Article	IF	CITATIONS
73	Deep Venous Thrombosis: Database creation and image preprocessing. , 2016, , .		2
74	UAV routing protocol for crop health management. , 2016, , .		12
75	Venous blood clot structure characterization using scattering operator. , 2016, , .		6
76	Spatial and time diversities for canonical correlation significance test in spectrum sensing. , 2016, , .		4
77	Spectrum Sensing for Full-Duplex Cognitive Radio Systems. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, , 363-374.	0.3	6
78	Wideband high dynamic range surveillance., 2015,,.		1
79	Modeling of a Complex-Shaped Underwater Vehicle for Robust Control Scheme. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 80, 491-506.	3.4	65
80	The performance of space shift keying for free-space optical communications over turbulent channels. Proceedings of SPIE, 2015, , .	0.8	12
81	Performance analysis of MISO multi-hop FSO links over log-normal channels with fog and beam divergence attenuations. Optics Communications, 2015, 334, 247-252.	2.1	44
82	Spatial diversity for FSO communication systems over atmospheric turbulence channels. , 2014, , .		12
83	Efficient spectrum sensing approaches based on waveform detection. , 2014, , .		8
84	Diversity techniques for a free-space optical communication system in correlated log-normal channels. Optical Engineering, 2014, 53, 016102.	1.0	42
85	Modeling of a complex-shaped underwater vehicle. , 2014, , .		17
86	Blind estimation of statistical properties of non-stationary random variables. Eurasip Journal on Advances in Signal Processing, 2014, 2014, .	1.7	2
87	Sensor Networks for Underwater Ecosystem Monitoring and Port Surveillance Systems. , 2014, , 431-468.		O
88	Composite web QoS with workflow conditional pathways using bounded sets. Service Oriented Computing and Applications, 2013, 7, 101-116.	1.6	9
89	LLMS Adaptive Array Beamforming Algorithm for Concentric Circular Arrays. , 2013, , .		1
90	LLMS adaptive beamforming algorithm implemented with finite precision. , 2012, , .		2

#	Article	IF	Citations
91	Enhancement of acoustic tomography using spatial and frequency diversities. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.7	2
92	Performance analysis of space shift keying (SSK) modulation with multiple cooperative relays. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.7	66
93	Blind Channel Estimation for STBC Systems Using Higher-Order Statistics. IEEE Transactions on Wireless Communications, 2011, 10, 495-505.	9.2	48
94	Performance of an LLMS beamformer in the presence of element gain and spacing variations., 2011,,.		3
95	New spectral image compression method based on an optimal phase coding and the RMS duration principle. Journal of Optics (United Kingdom), 2010, 12, 115403.	2.2	24
96	Adaptive Array Beamforming Using a Combined LMS-LMS Algorithm. IEEE Transactions on Antennas and Propagation, 2010, 58, 3545-3557.	5.1	78
97	Adaptive array beamforming using a combined LMS-LMS algorithm. , 2010, , .		10
98	Analysis of the RLMS adaptive beamforming algorithm implemented with finite precision., 2010,,.		3
99	Application of Fuzzy Logic control in automated transport systems. , 2010, , .		3
100	Classification of digital modulated signals based on time frequency representation. , 2010, , .		8
101	Double random phase encryption scheme to multiplex and simultaneous encode multiple images. Applied Optics, 2009, 48, 5933.	2.1	95
102	New Image Encryption and Compression Method Based on Independent Component Analysis. , 2008, , .		5
103	Independent Component Analysis Based Approach to Biometric Recognition., 2008,,.		2
104	All-optical video-image encryption with enforced security level using independent component analysis. Journal of Optics, 2007, 9, 787-796.	1.5	12
105	A significant improvement of both yield and purity during SWCNT synthesis via the electric arc process. Carbon, 2007, 45, 1651-1661.	10.3	30
106	Sparse ICA via cluster-wise PCA. Neurocomputing, 2006, 69, 1458-1466.	5.9	26
107	Instantaneous MISO Separation of BPSK Sources. Lecture Notes in Computer Science, 2006, , 862-867.	1.3	2
108	Automatic modulation recognition of MPSK signals using constellation rotation and its 4th order cumulant., 2005, 15, 295-304.		30

#	Article	IF	Citations
109	HOS Based Distinctive Features for Preliminary Signal Classification. Lecture Notes in Computer Science, 2004, , 1158-1164.	1.3	3
110	Batch Mutually Referenced Separation Algorithm for MIMO Convolutive Mixtures. Lecture Notes in Computer Science, 2004, , 453-460.	1.3	0
111	Separation of sources using simulated annealing and competitive learning. Neurocomputing, 2002, 49, 39-60.	5.9	10
112	Blind multiuser separation of instantaneous mixture algorithm based on geometrical concepts. Signal Processing, 2002, 82, 1155-1175.	3.7	25
113	A mutually referenced blind multiuser separation of convolutive mixture algorithm. Signal Processing, 2001, 81, 2253-2266.	3.7	12
114	Orientation by weighted randomness. Artificial Life and Robotics, 2000, 4, 119-123.	1.2	0
115	Adaptive subspace algorithm for blind separation of independent sources in convolutive mixture. IEEE Transactions on Signal Processing, 2000, 48, 583-586.	5. 3	43
116	Navigation by weighted chance. , 1999, , .		1
117	What should we say about the kurtosis?. IEEE Signal Processing Letters, 1999, 6, 321-322.	3.6	29
118	Multichannel blind separation of sources algorithm based on cross-cumulant and the Levenberg-Marquardt method. IEEE Transactions on Signal Processing, 1999, 47, 3172-3175.	5.3	16
119	Removing artifacts from electrocardiographic signals using independent components analysis. Neurocomputing, 1998, 22, 173-186.	5.9	143
120	A direct solution for blind separation of sources. IEEE Transactions on Signal Processing, 1996, 44, 746-748.	5. 3	32
121	Fourth-order criteria for blind sources separation. IEEE Transactions on Signal Processing, 1995, 43, 2022-2025.	5.3	54
122	Estimation of speech embedded in a reverberant environment with multiple sources of noise., 0,,.		2