Suzana Dragicevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9165778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial Decision-Making for Dense Built Environments: The Logic Scoring of Preference Method for 3D Suitability Analysis. Land, 2022, 11, 443.	2.9	2
2	Modeling the geospatial dynamics of residential segregation in three Canadian cities: An agentâ€based approach. Transactions in GIS, 2021, 25, 948-967.	2.3	5
3	Spatial multi-criteria evaluation in 3D context: suitability analysis of urban vertical development. Cartography and Geographic Information Science, 2021, 48, 105-123.	3.0	5
4	Exploring the Sensitivity of Recurrent Neural Network Models for Forecasting Land Cover Change. Land, 2021, 10, 282.	2.9	3
5	GIS.LSP: A soft computing logic method and tool for geospatial suitability analysis. Transactions in GIS, 2021, 25, 1228-1248.	2.3	3
6	Suitability Analysis of Acoustic Refugia for Endangered Killer Whales (Orcinus orca) Using the GIS-based Logic Scoring of Preference Method. Environmental Management, 2021, 68, 262-278.	2.7	4
7	A Geographic Network Automata Approach for Modeling Dynamic Ecological Systems. Geographical Analysis, 2020, 52, 3-27.	3.5	8
8	Complex spatial networks: Theory and geospatial applications. Geography Compass, 2020, 14, e12502.	2.7	8
9	Representing Complex Evolving Spatial Networks: Geographic Network Automata. ISPRS International Journal of Geo-Information, 2020, 9, 270.	2.9	15
10	NEAT approach for testing and validation of geospatial network agent-based model processes: case study of influenza spread. International Journal of Geographical Information Science, 2020, 34, 1792-1821.	4.8	7
11	A geospatial agent-based model of the spatial urban dynamics of immigrant population: A study of the island of Montreal, Canada. PLoS ONE, 2019, 14, e0219188.	2.5	15
12	A fourâ€dimensional agentâ€based model: A case study of forestâ€fire smoke propagation. Transactions in GIS, 2019, 23, 417-434.	2.3	6
13	Multidimensional Web GIS Approach for Citizen Participation on Urban Evolution. ISPRS International Journal of Geo-Information, 2019, 8, 253.	2.9	19
14	Short-Term Forecasting of Land Use Change Using Recurrent Neural Network Models. Sustainability, 2019, 11, 5376.	3.2	16
15	Land-Use Change Detection with Convolutional Neural Network Methods. Environments - MDPI, 2019, 6, 25.	3.3	37
16	Analyzing the Effects of Temporal Resolution and Classification Confidence for Modeling Land Cover Change with Long Short-Term Memory Networks. Remote Sensing, 2019, 11, 2784.	4.0	13
17	A local and regional spatial index for measuring three-dimensional urban compactness growth. Environment and Planning B: Urban Analytics and City Science, 2019, 46, 143-164.	2.0	16
18	Urban geosimulations with the Logic Scoring of Preference method for agent-based decision-making. Habitat International, 2018, 72, 3-17.	5.8	9

#	Article	IF	CITATIONS
19	Network-agent based model for simulating the dynamic spatial network structure of complex ecological systems. Ecological Modelling, 2018, 389, 19-32.	2.5	26
20	iCity 3D: A geosimualtion method and tool for three-dimensional modeling of vertical urban development. Landscape and Urban Planning, 2017, 167, 356-367.	7.5	43
21	Machine Learning Techniques for Modelling Short Term Land-Use Change. ISPRS International Journal of Geo-Information, 2017, 6, 387.	2.9	34
22	A Geosimulation Approach for Data Scarce Environments: Modeling Dynamics of Forest Insect Infestation across Different Landscapes. ISPRS International Journal of Geo-Information, 2016, 5, 9.	2.9	8
23	Modeling Urban Land Use Changes Using Support Vector Machines. Transactions in GIS, 2016, 20, 718-734.	2.3	35
24	Towards a voxel-based geographic automata for the simulation of geospatial processes. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117, 206-216.	11.1	18
25	A GIS-based Logic Scoring of Preference method for evaluation of land capability and suitability for agriculture. Computers and Electronics in Agriculture, 2016, 124, 340-353.	7.7	75
26	Geospatial pest-parasitoid agent based model for optimizing biological control of forest insect infestation. Ecological Modelling, 2016, 337, 310-329.	2.5	4
27	A development of spatiotemporal queries to analyze the simulation outcomes from a voxel automata model. Earth Science Informatics, 2016, 9, 343-353.	3.2	2
28	Spatial indices for measuring three-dimensional patterns in a voxel-based space. Journal of Geographical Systems, 2016, 18, 183-204.	3.1	9
29	Comparison of GISâ€Based Logic Scoring of Preference and Multicriteria Evaluation Methods: Urban Land Use Suitability. Geographical Analysis, 2016, 48, 427-447.	3.5	21
30	Geospatial big data handling theory and methods: A review and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115, 119-133.	11.1	333
31	An agent-based modeling approach to represent infestation dynamics of the emerald ash borer beetle. Ecological Informatics, 2015, 30, 97-109.	5.2	11
32	Integrating <scp>GIS</scp> â€Based Geoâ€Atom Theory and Voxel Automata to Simulate the Dispersal of Airborne Pollutants. Transactions in GIS, 2015, 19, 582-603.	2.3	11
33	GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat International, 2015, 45, 114-125.	5.8	67
34	Analytical geospatial Digital Earth. International Journal of Digital Earth, 2014, 7, 253-255.	3.9	4
35	Increased sediment loads over coral reefs in Saint Lucia in relation to land use change in contributing watersheds. Ocean and Coastal Management, 2014, 95, 35-45.	4.4	25
36	A spatially explicit network science model for emergency evacuations in an urban context. Computers, Environment and Urban Systems, 2014, 44, 15-26.	7.1	18

#	Article	IF	CITATIONS
37	Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model. Journal of Geographical Systems, 2013, 15, 403-426.	3.1	31
38	Introductory editorial: web-based sensors and geoprocessing services. Applied Geomatics, 2013, 5, 1-2.	2.5	2
39	Integration of multicriteria evaluation and cellular automata methods for landslide simulation modelling. Geomatics, Natural Hazards and Risk, 2013, 4, 355-375.	4.3	26
40	Modelling the dynamics of soil redistribution induced by sheet erosion using the Universal Soil Loss Equation and cellular automata. Geoderma, 2013, 202-203, 112-125.	5.1	16
41	Model testing and assessment: Perspectives from a swarm intelligence, agent-based model of forest insect infestations. Computers, Environment and Urban Systems, 2013, 39, 121-135.	7.1	8
42	High Resolution Urban Land-use Change Modeling: Agent iCity Approach. Applied Spatial Analysis and Policy, 2012, 5, 291-315.	2.0	55
43	Landscape-level simulation of forest insect disturbance: Coupling swarm intelligent agents with GIS-based cellular automata model. Ecological Modelling, 2012, 231, 53-64.	2.5	22
44	ForestSimMPB: A swarming intelligence and agent-based modeling approach for mountain pine beetle outbreaks. Ecological Informatics, 2011, 6, 62-72.	5.2	23
45	Development of an urban landslide cellular automata model: a case study of North Vancouver, Canada. Earth Science Informatics, 2011, 4, 69-80.	3.2	11
46	Modeling-in-the-middle: bridging the gap between agent-based modeling and multi-objective decision-making for land use change. International Journal of Geographical Information Science, 2011, 25, 717-737.	4.8	34
47	Modeling the Dynamics of Complex Spatial Systems Using GIS, Cellular Automata and Fuzzy Sets Applied to Invasive Plant Species Propagation. Geography Compass, 2010, 4, 599-615.	2.7	10
48	Simulation and validation of a reinforcement learning agent-based model for multi-stakeholder forest management. Computers, Environment and Urban Systems, 2010, 34, 162-174.	7.1	38
49	Modeling mountain pine beetle infestation with an agent-based approach at two spatial scales. Environmental Modelling and Software, 2010, 25, 223-236.	4.5	40
50	Incorporating spatio-temporal knowledge in an Intelligent Agent Model for natural resource management. Landscape and Urban Planning, 2010, 96, 123-133.	7.5	11
51	Defining Transition Rules with Reinforcement Learning for Modeling Land Cover Change. Simulation, 2009, 85, 291-305.	1.8	4
52	Evaluating Spatio-temporal Complexities of Forest Management: An Integrated Agent-based Modeling and GIS Approach. Environmental Modeling and Assessment, 2009, 14, 481-496.	2.2	14
53	GIS and Intelligent Agents for Multiobjective Natural Resource Allocation: A Reinforcement Learning Approach. Transactions in GIS, 2009, 13, 253-272.	2.3	17
54	Collaborative GIS for spatial decision support and visualization. Journal of Environmental Management, 2009, 90, 1963-1965.	7.8	23

#	Article	IF	CITATIONS
55	Modeling urban growth using a variable grid cellular automaton. Computers, Environment and Urban Systems, 2009, 33, 35-43.	7.1	134
56	Agent-based model validation using Bayesian networks and vector spatial data. Environment and Planning B: Planning and Design, 2009, 36, 787-801.	1.7	14
57	Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour. Ecological Modelling, 2008, 210, 71-84.	2.5	117
58	An object-oriented cellular automata model for forest planning problems. Ecological Modelling, 2008, 212, 359-371.	2.5	33
59	Collaborative spaces for GIS-based multimedia cartography in blended environments. Computers and Education, 2008, 50, 371-385.	8.3	22
60	Spatial patterns of forest floor properties and litterfall amounts associated with bigleaf maple in conifer forest of southwestern British Columbia. Canadian Journal of Soil Science, 2008, 88, 295-313.	1.2	10
61	A GIS-Based Irregular Cellular Automata Model of Land-Use Change. Environment and Planning B: Planning and Design, 2007, 34, 708-724.	1.7	113
62	Implications of error and uncertainty for an environmental planning scenario: A sensitivity analysis of GIS-based variables in a reserve design exercise. Landscape and Urban Planning, 2007, 79, 210-217.	7.5	48
63	iCity: A GIS–CA modelling tool for urban planning and decision making. Environmental Modelling and Software, 2007, 22, 761-773.	4.5	219
64	Enhancing a GIS Cellular Automata Model of Land Use Change: Bayesian Networks, Influence Diagrams and Causality. Transactions in GIS, 2007, 11, 681-702.	2.3	43
65	Evaluating forest management practices using a GIS-based cellular automata modeling approach with multispectral imagery. Environmental Modeling and Assessment, 2007, 12, 105-118.	2.2	16
66	GIS-Based Multicriteria Evaluation and Fuzzy Sets to Identify Priority Sites for Marine Protection. Biodiversity and Conservation, 2007, 16, 2539-2558.	2.6	91
67	Spatial/temporal mismatch: a conflation protocol for Canada Census spatial files. Canadian Geographer / Geographie Canadien, 2006, 50, 74-84.	1.5	9
68	Modeling Collaborative GIS Processes Using Soft Systems Theory, UML and Object Oriented Design. Transactions in GIS, 2006, 10, 199-218.	2.3	16
69	Assessing cellular automata model behaviour using a sensitivity analysis approach. Computers, Environment and Urban Systems, 2006, 30, 921-953.	7.1	149
70	A fuzzy-constrained cellular automata model of forest insect infestations. Ecological Modelling, 2006, 192, 107-125.	2.5	72
71	Attitudes toward urban green spaces: integrating questionnaire survey and collaborative GIS techniques to improve attitude measurements. Landscape and Urban Planning, 2005, 71, 147-162.	7.5	164
72	A Web GIS collaborative framework to structure and manage distributed planning processes. Journal of Geographical Systems, 2004, 6, 133-153.	3.1	77

#	Article	IF	CITATIONS
73	The potential of Web-based GIS. Journal of Geographical Systems, 2004, 6, 79-81.	3.1	80
74	Space, Time, and Dynamics Modeling in Historical GIS Databases: A Fuzzy Logic Approach. Environment and Planning B: Planning and Design, 2001, 28, 545-562.	1.7	36
75	An application of fuzzy logic reasoning for GIS temporal modeling of dynamic processes. Fuzzy Sets and Systems, 2000, 113, 69-80.	2.7	26
76	A fuzzy set approach for modelling time in GIS. International Journal of Geographical Information Science, 2000, 14, 225-245.	4.8	44
77	Map Comparison Methods for Threeâ€Ðimensional Space and Time Voxel Data. Geographical Analysis, 0, , .	3.5	2