A Miguel Holgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9165333/publications.pdf

Version: 2024-02-01

24 papers 1,437 citations

623734 14 h-index 677142 22 g-index

24 all docs

24 docs citations

times ranked

24

2087 citing authors

#	Article	IF	CITATIONS
1	The NANOGrav 12.5Âyr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophysical Journal Letters, 2020, 905, L34.	8.3	528
2	The astrophysics of nanohertz gravitational waves. Astronomy and Astrophysics Review, 2019, 27, 1.	25.5	166
3	The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries. Astrophysical Journal, 2019, 880, 116.	4.5	102
4	Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers. Physical Review D, 2018, 97, .	4.7	100
5	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
6	Astrophysical and Theoretical Physics Implications from Multimessenger Neutron Star Observations. Physical Review Letters, 2021, 126, 181101.	7.8	69
7	Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset. Physical Review Letters, 2021, 127, 251302.	7.8	62
8	Modeling the Uncertainties of Solar System Ephemerides for Robust Gravitational-wave Searches with Pulsar-timing Arrays. Astrophysical Journal, 2020, 893, 112.	4.5	49
9	Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets. Physics of Plasmas, 2014, 21, 055703.	1.9	39
10	The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory. Astrophysical Journal, 2020, 889, 38.	4. 5	36
11	Pulsar timing constraints on the Fermi massive black hole binary blazar population. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L74-L78.	3.3	31
12	The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background. Astrophysical Journal Letters, 2021, 923, L22.	8.3	30
13	Candidate Periodically Variable Quasars from the Dark Energy Survey and the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	28
14	The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics. Astrophysical Journal, 2020, 890, 108.	4.5	28
15	Discovery of a Candidate Binary Supermassive Black Hole in a Periodic Quasar from Circumbinary Accretion Variability. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	24
16	CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD. Astrophysical Journal, Supplement Series, 2017, 231, 17.	7.7	16
17	Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral. Astrophysical Journal, 2018, 857, 38.	4.5	11
18	Associating host galaxy candidates to massive black hole binaries resolved by pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2019, 485, 248-259.	4.4	9

#	Article	IF	CITATION
19	Massive black hole mergers with orbital information: predictions from the ASTRID simulation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2220-2238.	4.4	9
20	Gravitational Radiation from Close Binaries with Time-varying Masses. Astrophysical Journal, 2019, 882, 39.	4.5	8
21	Dynamical Formation Scenarios for GW190521 and Prospects for Decihertz Gravitational-wave Astronomy with GW190521-like Binaries. Astrophysical Journal Letters, 2021, 909, L24.	8.3	8
22	The Role of Strong Gravity and the Nuclear Equation of State on Neutron-star Common-envelope Accretion. Astrophysical Journal Letters, 2021, 910, L22.	8.3	5
23	Anti-diffusive-like-behavior in semi-analytic radiative shocks via multigroup Sn transport with constant cross sections. High Energy Density Physics, 2015, 17, 114-118.	1.5	4
24	Gravitational waves from supernova mass loss and natal kicks in close binaries. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5560-5566.	4.4	2