Xinyu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9165110/publications.pdf

Version: 2024-02-01

53	1,499	20	38
papers	citations	h-index	g-index
53	53 does citations	53	1888
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Experimental and numerical studies of liquid-liquid two-phase flows in microchannel with sudden expansion/contraction cavities. Chemical Engineering Journal, 2022, 433, 133820.	6.6	8
2	Numerical study of droplet impact on superhydrophobic vibrating surfaces with microstructures. Case Studies in Thermal Engineering, 2022, 30, 101732.	2.8	1
3	Atomistic insights into dynamic growth of pentacene thin films on metal surfaces functionalized with self-assembled monolayers. Applied Surface Science, 2022, 579, 152203.	3.1	6
4	Intelligent identification of two-phase flow patterns in a long pipeline-riser system. Flow Measurement and Instrumentation, 2022, 84, 102124.	1.0	4
5	Improvement of flow and heat transfer performance of manifold microchannel with porous fins. Applied Thermal Engineering, 2022, 206, 118129.	3.0	31
6	Discovery of high thermoelectric performance of WS2-WSe2 nanoribbons with superlattice and Janus structures. Journal of Alloys and Compounds, 2022, 903, 163850.	2.8	7
7	Tuning Interfacial Thermal Conductance Across Metal–Organic Semiconductor Interfaces by Mixing Self-Assembled Monolayers. ACS Applied Electronic Materials, 2022, 4, 718-728.	2.0	4
8	Interfacial thermal transport of graphene \hat{l}^2 -Ga ₂ O ₃ heterojunction: a molecular dynamics study with a self-consistent interatomic potential. Physical Chemistry Chemical Physics, 2022, , .	1.3	3
9	Investigation of flow and heat transfer performance of the manifold microchannel with different manifold arrangements. Case Studies in Thermal Engineering, 2022, 34, 102073.	2.8	17
10	Strain engineering on the thermoelectric performance of monolayer AlP3: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2022, , 115365.	1.3	1
11	First-principles calculations of phonon behaviors in graphether: a comparative study with graphene. Physical Chemistry Chemical Physics, 2021, 23, 123-130.	1.3	22
12	Improved thermoelectric properties of WS ₂ â€"WSe ₂ phononic crystals: insights from first-principles calculations. Nanoscale, 2021, 13, 7176-7192.	2.8	24
13	Thermal boundary resistance at graphene-pentacene interface explored by a data-intensive approach. Nanotechnology, 2021, 32, 215404.	1.3	3
14	Microfluidics in cardiovascular disease research: state of the art and future outlook. Microsystems and Nanoengineering, 2021, 7, 19.	3.4	47
15	High-Throughput Computations of Cross-Plane Thermal Conductivity in Multilayer Stanene. International Journal of Heat and Mass Transfer, 2021, 171, 121073.	2.5	10
16	A numerical study on hydrodynamic and heat transfer characteristics of gas–liquid Taylor flow in horizontal mini tubes. Numerical Heat Transfer; Part A: Applications, 2021, 80, 487-504.	1.2	1
17	Extraordinary thermoelectric performance in 2D group III monolayer $XP < sub > 3 < lsub > (X = Al, Ga, and)$ Tj $ETQq1$	1 0.78431 1.3	14 rgBT /Over
18	Dewetting transition of water on nanostructured and wettability patterned surfaces: A molecular dynamics study. Journal of Molecular Liquids, 2021, 336, 116869.	2.3	8

#	Article	IF	Citations
19	Flow regime recognition in a long pipeline-riser system based on signals at the top of the riser. Flow Measurement and Instrumentation, 2021, 80, 101987.	1.0	3
20	Nonequilibrium phonon transport induced by finite sizes: Effect of phonon-phonon coupling. Physical Review B, 2021, 104, .	1.1	9
21	Predicting the effective thermal conductivity of unfrozen soils with various water contents based on artificial neural network. Nanotechnology, 2021, 33, .	1.3	6
22	Thermal transport in organic semiconductors. Journal of Applied Physics, 2021, 130, .	1.1	18
23	Studies of gas-liquid two-phase flows in horizontal mini tubes using 3D reconstruction and numerical methods. International Journal of Multiphase Flow, 2020, 133, 103456.	1.6	19
24	Thermal and flow characterization in nanochannels with tunable surface wettability: A comprehensive molecular dynamics study. Numerical Heat Transfer; Part A: Applications, 2020, 78, 231-251.	1.2	17
25	Effect of biaxial strain on thermal transport in WS2 monolayer from first principles calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114312.	1.3	31
26	Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale, 2020, 12, 15512-15527.	2.8	58
27	Heat transfer and flow characteristics of microchannels with solid and porous ribs. Applied Thermal Engineering, 2020, 178, 115639.	3.0	62
28	Atomistic simulations of phonon behaviors in isotopically doped graphene with Sierpinski carpet fractal structure. Materials Research Express, 2020, 7, 035020.	0.8	9
29	Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger. RSC Advances, 2020, 10, 23097-23107.	1.7	13
30	Enhancement of Interfacial Thermal Transport between Metal and Organic Semiconductor Using Self-Assembled Monolayers with Different Terminal Groups. Journal of Physical Chemistry C, 2020, 124, 16748-16757.	1.5	18
31	Molecular dynamic simulation of thermal transport in monolayer C3B x N1â^'x alloy. Nanotechnology, 2020, 31, 185404.	1.3	3
32	Cellâ€Inspired Allâ€Aqueous Microfluidics: From Intracellular Liquid–Liquid Phase Separation toward Advanced Biomaterials. Advanced Science, 2020, 7, 1903359.	5.6	111
33	Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Delivery, 2020, 27, 200-215.	2.5	34
34	Tunable thermal transport in a WS ₂ monolayer with isotopic doping and fractal structure. Nanoscale, 2019, 11, 19763-19771.	2.8	20
35	Machine Learning Enabled Prediction of Mechanical Properties of Tungsten Disulfide Monolayer. ACS Omega, 2019, 4, 10121-10128.	1.6	40
36	Mechanical responses of WSe ₂ monolayers: a molecular dynamics study. Materials Research Express, 2019, 6, 085071.	0.8	17

#	Article	IF	CITATIONS
37	Achieving high performance Ga ₂ O ₃ diodes by adjusting chemical composition of tin oxide Schottky electrode. Semiconductor Science and Technology, 2019, 34, 075001.	1.0	6
38	Mechanical properties of molybdenum diselenide revealed by molecular dynamics simulation and support vector machine. Physical Chemistry Chemical Physics, 2019, 21, 9159-9167.	1.3	33
39	Thermal transport in C ₃ N nanotube: a comparative study with carbon nanotube. Nanotechnology, 2019, 30, 255401.	1.3	12
40	Phonon thermal conduction in a graphene–C ₃ N heterobilayer using molecular dynamics simulations. Nanotechnology, 2019, 30, 075403.	1.3	55
41	Thermal Transport in Supported Graphene Nanomesh. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9211-9215.	4.0	16
42	Molecular dynamics study of thermal transport in a dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) organic semiconductor. Nanoscale, 2017, 9, 2262-2271.	2.8	31
43	Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study. Nanotechnology, 2017, 28, 255403.	1.3	34
44	Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS ₂ and MoSe ₂ Heterostructure. Journal of Physical Chemistry C, 2017, 121, 10336-10344.	1.5	44
45	Molecular dynamics study of thermal transport in a nitrogenated holey graphene bilayer. Journal of Materials Chemistry C, 2017, 5, 5119-5127.	2.7	36
46	Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure. Nanotechnology, 2017, 28, 035404.	1.3	19
47	Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice. Physical Chemistry Chemical Physics, 2017, 19, 24240-24248.	1.3	38
48	Investigation of interfacial thermal transport across graphene and an organic semiconductor using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 15933-15941.	1.3	21
49	Thermal Annealing Effect on the Thermal and Electrical Properties of Organic Semiconductor Thin Films. MRS Advances, 2016, 1, 1637-1643.	0.5	7
50	A Lowâ€Operatingâ€Power and Flexible Activeâ€Matrix Organicâ€Transistor Temperatureâ€Sensor Array. Advanced Materials, 2016, 28, 4832-4838.	11.1	265
51	Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles. Scientific Reports, 2015, 5, 16095.	1.6	35
52	Direct Patterning of Selfâ€Assembled Monolayers by Stamp Printing Method and Applications in High Performance Organic Fieldâ€Effect Transistors and Complementary Inverters. Advanced Functional Materials, 2015, 25, 6112-6121.	7.8	43
53	High performance organic transistor active-matrix driver developed on paper substrate. Scientific Reports, 2014, 4, 6430.	1.6	110