
## Xinyu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9165110/publications.pdf Version: 2024-02-01



XINVII WANC

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Lowâ€Operatingâ€Power and Flexible Activeâ€Matrix Organicâ€Transistor Temperatureâ€Sensor Array.<br>Advanced Materials, 2016, 28, 4832-4838.                                                                                         | 11.1 | 265       |
| 2  | Cellâ€Inspired Allâ€Aqueous Microfluidics: From Intracellular Liquid–Liquid Phase Separation toward<br>Advanced Biomaterials. Advanced Science, 2020, 7, 1903359.                                                                      | 5.6  | 111       |
| 3  | High performance organic transistor active-matrix driver developed on paper substrate. Scientific<br>Reports, 2014, 4, 6430.                                                                                                           | 1.6  | 110       |
| 4  | Heat transfer and flow characteristics of microchannels with solid and porous ribs. Applied Thermal Engineering, 2020, 178, 115639.                                                                                                    | 3.0  | 62        |
| 5  | Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale, 2020, 12, 15512-15527.                                                                            | 2.8  | 58        |
| 6  | Phonon thermal conduction in a graphene–C <sub>3</sub> N heterobilayer using molecular dynamics simulations. Nanotechnology, 2019, 30, 075403.                                                                                         | 1.3  | 55        |
| 7  | Microfluidics in cardiovascular disease research: state of the art and future outlook. Microsystems and Nanoengineering, 2021, 7, 19.                                                                                                  | 3.4  | 47        |
| 8  | Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS <sub>2</sub> and<br>MoSe <sub>2</sub> Heterostructure. Journal of Physical Chemistry C, 2017, 121, 10336-10344.                                                      | 1.5  | 44        |
| 9  | Direct Patterning of Selfâ€Assembled Monolayers by Stamp Printing Method and Applications in High<br>Performance Organic Fieldâ€Effect Transistors and Complementary Inverters. Advanced Functional<br>Materials, 2015, 25, 6112-6121. | 7.8  | 43        |
| 10 | Machine Learning Enabled Prediction of Mechanical Properties of Tungsten Disulfide Monolayer. ACS<br>Omega, 2019, 4, 10121-10128.                                                                                                      | 1.6  | 40        |
| 11 | Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice. Physical Chemistry Chemical Physics, 2017, 19, 24240-24248.                                                                       | 1.3  | 38        |
| 12 | Molecular dynamics study of thermal transport in a nitrogenated holey graphene bilayer. Journal of<br>Materials Chemistry C, 2017, 5, 5119-5127.                                                                                       | 2.7  | 36        |
| 13 | Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles. Scientific Reports, 2015, 5, 16095.                                                                                    | 1.6  | 35        |
| 14 | Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.<br>Nanotechnology, 2017, 28, 255403.                                                                                                          | 1.3  | 34        |
| 15 | Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Delivery, 2020, 27, 200-215.                                                                                     | 2.5  | 34        |
| 16 | Mechanical properties of molybdenum diselenide revealed by molecular dynamics simulation and support vector machine. Physical Chemistry Chemical Physics, 2019, 21, 9159-9167.                                                         | 1.3  | 33        |
| 17 | Molecular dynamics study of thermal transport in a dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene<br>(DNTT) organic semiconductor. Nanoscale, 2017, 9, 2262-2271.                                                                      | 2.8  | 31        |
| 18 | Effect of biaxial strain on thermal transport in WS2 monolayer from first principles calculations.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114312.                                                        | 1.3  | 31        |

XINYU WANG

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Improvement of flow and heat transfer performance of manifold microchannel with porous fins.<br>Applied Thermal Engineering, 2022, 206, 118129.                                                                     | 3.0 | 31        |
| 20 | Improved thermoelectric properties of WS <sub>2</sub> –WSe <sub>2</sub> phononic crystals:<br>insights from first-principles calculations. Nanoscale, 2021, 13, 7176-7192.                                          | 2.8 | 24        |
| 21 | First-principles calculations of phonon behaviors in graphether: a comparative study with graphene.<br>Physical Chemistry Chemical Physics, 2021, 23, 123-130.                                                      | 1.3 | 22        |
| 22 | Investigation of interfacial thermal transport across graphene and an organic semiconductor using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 15933-15941.                       | 1.3 | 21        |
| 23 | Tunable thermal transport in a WS <sub>2</sub> monolayer with isotopic doping and fractal structure. Nanoscale, 2019, 11, 19763-19771.                                                                              | 2.8 | 20        |
| 24 | Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure.<br>Nanotechnology, 2017, 28, 035404.                                                                                   | 1.3 | 19        |
| 25 | Studies of gas-liquid two-phase flows in horizontal mini tubes using 3D reconstruction and numerical methods. International Journal of Multiphase Flow, 2020, 133, 103456.                                          | 1.6 | 19        |
| 26 | Enhancement of Interfacial Thermal Transport between Metal and Organic Semiconductor Using<br>Self-Assembled Monolayers with Different Terminal Groups. Journal of Physical Chemistry C, 2020, 124,<br>16748-16757. | 1.5 | 18        |
| 27 | Thermal transport in organic semiconductors. Journal of Applied Physics, 2021, 130, .                                                                                                                               | 1.1 | 18        |
| 28 | Mechanical responses of WSe <sub>2</sub> monolayers: a molecular dynamics study. Materials<br>Research Express, 2019, 6, 085071.                                                                                    | 0.8 | 17        |
| 29 | Thermal and flow characterization in nanochannels with tunable surface wettability: A<br>comprehensive molecular dynamics study. Numerical Heat Transfer; Part A: Applications, 2020, 78,<br>231-251.               | 1.2 | 17        |
| 30 | Investigation of flow and heat transfer performance of the manifold microchannel with different manifold arrangements. Case Studies in Thermal Engineering, 2022, 34, 102073.                                       | 2.8 | 17        |
| 31 | Thermal Transport in Supported Graphene Nanomesh. ACS Applied Materials & Interfaces, 2018, 10, 9211-9215.                                                                                                          | 4.0 | 16        |
| 32 | Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger. RSC<br>Advances, 2020, 10, 23097-23107.                                                                                    | 1.7 | 13        |
| 33 | Thermal transport in C <sub>3</sub> N nanotube: a comparative study with carbon nanotube.<br>Nanotechnology, 2019, 30, 255401.                                                                                      | 1.3 | 12        |
| 34 | High-Throughput Computations of Cross-Plane Thermal Conductivity in Multilayer Stanene.<br>International Journal of Heat and Mass Transfer, 2021, 171, 121073.                                                      | 2.5 | 10        |
| 35 | Atomistic simulations of phonon behaviors in isotopically doped graphene with Sierpinski carpet<br>fractal structure. Materials Research Express, 2020, 7, 035020.                                                  | 0.8 | 9         |
|    |                                                                                                                                                                                                                     |     |           |

XINYU WANG

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nonequilibrium phonon transport induced by finite sizes: Effect of phonon-phonon coupling. Physical<br>Review B, 2021, 104, .                                                                                             | 1.1 | 9         |
| 38 | Dewetting transition of water on nanostructured and wettability patterned surfaces: A molecular dynamics study. Journal of Molecular Liquids, 2021, 336, 116869.                                                          | 2.3 | 8         |
| 39 | Experimental and numerical studies of liquid-liquid two-phase flows in microchannel with sudden expansion/contraction cavities. Chemical Engineering Journal, 2022, 433, 133820.                                          | 6.6 | 8         |
| 40 | Thermal Annealing Effect on the Thermal and Electrical Properties of Organic Semiconductor Thin Films. MRS Advances, 2016, 1, 1637-1643.                                                                                  | 0.5 | 7         |
| 41 | Discovery of high thermoelectric performance of WS2-WSe2 nanoribbons with superlattice and Janus structures. Journal of Alloys and Compounds, 2022, 903, 163850.                                                          | 2.8 | 7         |
| 42 | Achieving high performance Ga <sub>2</sub> O <sub>3</sub> diodes by adjusting chemical composition of tin oxide Schottky electrode. Semiconductor Science and Technology, 2019, 34, 075001.                               | 1.0 | 6         |
| 43 | Predicting the effective thermal conductivity of unfrozen soils with various water contents based on artificial neural network. Nanotechnology, 2021, 33, .                                                               | 1.3 | 6         |
| 44 | Atomistic insights into dynamic growth of pentacene thin films on metal surfaces functionalized with self-assembled monolayers. Applied Surface Science, 2022, 579, 152203.                                               | 3.1 | 6         |
| 45 | Intelligent identification of two-phase flow patterns in a long pipeline-riser system. Flow<br>Measurement and Instrumentation, 2022, 84, 102124.                                                                         | 1.0 | 4         |
| 46 | Tuning Interfacial Thermal Conductance Across Metal–Organic Semiconductor Interfaces by Mixing Self-Assembled Monolayers. ACS Applied Electronic Materials, 2022, 4, 718-728.                                             | 2.0 | 4         |
| 47 | Molecular dynamic simulation of thermal transport in monolayer C3B x N1â^'x alloy. Nanotechnology, 2020, 31, 185404.                                                                                                      | 1.3 | 3         |
| 48 | Thermal boundary resistance at graphene-pentacene interface explored by a data-intensive approach.<br>Nanotechnology, 2021, 32, 215404.                                                                                   | 1.3 | 3         |
| 49 | Flow regime recognition in a long pipeline-riser system based on signals at the top of the riser. Flow Measurement and Instrumentation, 2021, 80, 101987.                                                                 | 1.0 | 3         |
| 50 | Interfacial thermal transport of graphene/l²-Ga <sub>2</sub> O <sub>3</sub> heterojunction: a<br>molecular dynamics study with a self-consistent interatomic potential. Physical Chemistry Chemical<br>Physics, 2022, , . | 1.3 | 3         |
| 51 | A numerical study on hydrodynamic and heat transfer characteristics of gas–liquid Taylor flow in<br>horizontal mini tubes. Numerical Heat Transfer; Part A: Applications, 2021, 80, 487-504.                              | 1.2 | 1         |
| 52 | Numerical study of droplet impact on superhydrophobic vibrating surfaces with microstructures.<br>Case Studies in Thermal Engineering, 2022, 30, 101732.                                                                  | 2.8 | 1         |
| 53 | Strain engineering on the thermoelectric performance of monolayer AlP3: A first-principles study.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2022, , 115365.                                               | 1.3 | 1         |