Loukas E Koutsokeras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9164953/publications.pdf

Version: 2024-02-01

430754 477173 33 847 18 29 citations g-index h-index papers 33 33 33 1050 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low-power supralinear photocurrent generation <i>via</i> excited state fusion in single-component nanostructured organic photodetectors. Journal of Materials Chemistry C, 2022, 10, 7575-7585.	2.7	4
2	Effects of biomechanical properties of blood on surface tension-driven flows in superhydrophilic channels. Physics of Fluids, 2022, 34, .	1.6	5
3	Efficiency of Carbon-Based Electrodes on a Microbial Electrolysis System for the Treatment of Bilge Water. Frontiers in Environmental Science, 2022, 10, .	1.5	O
4	Comparative Study of Polyethylene Films Embedded with Oxide Nanoparticles of Granulated and Free-Standing Nature. Polymers, 2022, 14, 2629.	2.0	0
5	Phosphate removal from synthetic and real wastewater using thermally treated seagrass residues of Posidonia oceanica. Journal of Cleaner Production, 2021, 278, 123294.	4.6	22
6	Untapped Potential of Moving Bed Biofilm Reactors with Different Biocarrier Types for Bilge Water Treatment: A Laboratory-Scale Study. Water (Switzerland), 2021, 13, 1810.	1.2	11
7	Evaluation of a Thermal Consolidation Process for the Production of Enhanced Technical Fabrics. Machines, 2021, 9, 143.	1.2	O
8	Controlling the optical properties of nanostructured oxide-based polymer films. Scientific Reports, 2021, 11, 16009.	1.6	8
9	Assessing the performance of electrospun nanofabrics as potential interlayer reinforcement materials for fiber-reinforced polymers. Composites and Advanced Materials, 2021, 30, 263498332110025.	0.5	3
10	Anaerobic granular sludge and zero valent scrap iron (ZVSI) pre-treated with green tea as a sustainable system for conversion of CO2 to CH4. Journal of Cleaner Production, 2020, 268, 121860.	4.6	16
11	Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery. Renewable Energy, 2020, 155, 53-64.	4.3	29
12	Laser induced ultrafast combustion synthesis of solution-based AlO _x for thin film transistors. Journal of Materials Chemistry C, 2020, 8, 6176-6184.	2.7	22
13	Synthesis and Characterization of Hydrogenated Diamond-Like Carbon (HDLC) Nanocomposite Films with Metal (Ag, Cu) Nanoparticles. Materials, 2020, 13, 1753.	1.3	3
14	Effects of pre-treatment using waste quarry dust on the adherence of recycled tyre rubber particles to cementitious paste in rubberised concrete. Construction and Building Materials, 2020, 254, 119325.	3.2	20
15	Biowaste-based biochar: A new strategy for fermentative bioethanol overproduction via whole-cell immobilization. Applied Energy, 2019, 242, 480-491.	5.1	35
16	Probing the Evolution of Retained Austenite in TRIP Steel During Strain-Induced Transformation: A Multitechnique Investigation. Jom, 2018, 70, 924-928.	0.9	4
17	Turning calcined waste egg shells and wastewater to Brushite: Phosphorus adsorption from aqua media and anaerobic sludge leach water. Journal of Cleaner Production, 2018, 178, 419-428.	4.6	76
18	Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics. Nanomaterials, 2018, 8, 209.	1.9	11

#	Article	IF	CITATIONS
19	Enhancing the nanoscratch resistance of pulsed laser deposited DLC films through molybdenum-doping. Surface and Coatings Technology, 2017, 330, 185-195.	2.2	23
20	Microstructure and nanomechanical properties of magnetron sputtered Ti â° Nb films. Surface and Coatings Technology, 2016, 302, 310-319.	2.2	25
21	Functionally graded poly(dimethylsiloxane)/silver nanocomposites with tailored broadband optical absorption. Thin Solid Films, 2015, 581, 14-19.	0.8	6
22	Electronic structure and mechanical properties of ternary ZrTaN alloys studied by <i>ab initio </i> calculations and thin-film growth experiments. Physical Review B, 2014, 90, .	1.1	45
23	Structure, electronic properties and electron energy loss spectra of transition metal nitride films. Thin Solid Films, 2013, 528, 49-52.	0.8	21
24	Stress, phase stability and oxidation resistance of ternary Ti–Me–N (Me=Zr, Ta) hard coatings. Thin Solid Films, 2013, 538, 56-70.	0.8	73
25	Nanocomposite Catalysts Producing Durable, Super-Black Carbon Nanotube Systems: Applications in Solar Thermal Harvesting. ACS Nano, 2012, 6, 10475-10485.	7.3	91
26	Structure, stability and mechanical performance of AlN:Ag nanocomposite films. Surface and Coatings Technology, 2010, 204, 1937-1941.	2.2	9
27	Electronic properties of binary and ternary, hard and refractory transition metal nitrides. Surface and Coatings Technology, 2010, 204, 2038-2041.	2.2	12
28	Electronic and crystal structure and bonding in Ti-based ternary solid solution nitrides and Ti–Cu–N nanocomposite films. Surface and Coatings Technology, 2010, 205, 1324-1330.	2.2	35
29	Structure and electronic properties of conducting, ternary TixTa1â^'xN films. Journal of Applied Physics, 2009, 105, .	1.1	48
30	Structure, stability and bonding of ternary transition metal nitrides. Surface and Coatings Technology, 2009, 204, 911-914.	2.2	53
31	Stress evolution in magnetron sputtered Ti–Zr–N and Ti–Ta–N films studied by in situ wafer curvature: Role of energetic particles. Thin Solid Films, 2009, 518, 1532-1537.	0.8	51
32	Plasma energy and work function of conducting transition metal nitrides for electronic applications. Applied Physics Letters, 2009, 94, .	1.5	55
33	Optical properties, structural parameters, and bonding of highly textured rocksalt tantalum nitride films. Journal of Applied Physics, 2008, 104, 124907.	1.1	31