
Mattia Albiero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9164938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hematopoietic and Nonhematopoietic <i>p66Shc</i> Differentially Regulates Stem Cell Traffic and Vascular Response to Ischemia in Diabetes. Antioxidants and Redox Signaling, 2022, 36, 593-607.	2.5	6
2	The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. Antioxidants and Redox Signaling, 2022, 36, 667-684.	2.5	15
3	Impaired Hematopoietic Stem/Progenitor Cell Traffic and Multi-organ Damage in Diabetes. Stem Cells, 2022, 40, 716-723.	1.4	11
4	Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. International Journal of Molecular Sciences, 2021, 22, 4254.	1.8	15
5	Inhibition of SGLT2 Rescues Bone Marrow Cell Traffic for Vascular Repair: Role of Glucose Control and Ketogenesis. Diabetes, 2021, 70, 1767-1779.	0.3	17
6	Arrhythmogenic Cardiomyopathy Is a Multicellular Disease Affecting Cardiac and Bone Marrow Mesenchymal Stromal Cells. Journal of Clinical Medicine, 2021, 10, 1871.	1.0	10
7	Fenofibrate increases circulating haematopoietic stem cells in people with diabetic retinopathy: a randomised, placebo-controlled trial. Diabetologia, 2021, 64, 2334-2344.	2.9	9
8	Diabetes pharmacotherapy and circulating stem/progenitor cells. State of the art and evidence gaps. Current Opinion in Pharmacology, 2020, 55, 151-156.	1.7	9
9	Nonâ€genomic mechanisms in the estrogen regulation of glycolytic protein levels in endothelial cells. FASEB Journal, 2020, 34, 12768-12784.	0.2	18
10	Pharmacologic PPAR-Î ³ Activation Reprograms Bone Marrow Macrophages and Partially Rescues HSPC Mobilization in Human and Murine Diabetes. Diabetes, 2020, 69, 1562-1572.	0.3	18
11	Diabetes mellitus impairs circulating proangiogenic granulocytes. Diabetologia, 2020, 63, 1872-1884.	2.9	13
12	Mitochondrial Calcium Uptake Is Instrumental to Alternative Macrophage Polarization and Phagocytic Activity. International Journal of Molecular Sciences, 2019, 20, 4966.	1.8	21
13	Angiogenic Abnormalities in Diabetes Mellitus: Mechanistic and Clinical Aspects. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5431-5444.	1.8	64
14	Inhibition of the Fission Machinery Mitigates OPA1 Impairment in Adult Skeletal Muscles. Cells, 2019, 8, 597.	1.8	65
15	DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Communications, 2019, 10, 2576.	5.8	274
16	Diabetes-Associated Myelopoiesis Drives Stem Cell Mobilopathy Through an OSM-p66Shc Signaling Pathway. Diabetes, 2019, 68, 1303-1314.	0.3	47
17	The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetologica, 2018, 55, 593-601.	1.2	103
18	Effects of SGLT2 Inhibitors on Circulating Stem and Progenitor Cells in Patients With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3773-3782.	1.8	29

#	Article	IF	CITATIONS
19	Interplay between gut microbiota and <i>p66Shc</i> affects obesityâ€associated insulin resistance. FASEB Journal, 2018, 32, 4004-4015.	0.2	17
20	Pharmacologic targeting of the diabetic stem cell mobilopathy. Pharmacological Research, 2018, 135, 18-24.	3.1	6
21	p66Shc gene expression in peripheral blood mononuclear cells and progression of diabetic complications. Cardiovascular Diabetology, 2018, 17, 16.	2.7	12
22	Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biology, 2018, 16, e2005886.	2.6	107
23	DPP-4 inhibition has no acute effect on BNP and its N-terminal pro-hormone measured by commercial immune-assays. A randomized cross-over trial in patients with type 2 diabetes. Cardiovascular Diabetology, 2017, 16, 22.	2.7	13
24	Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metabolism, 2017, 25, 1374-1389.e6.	7.2	388
25	miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovascular Research, 2017, 113, 1627-1638.	1.8	62
26	Generation and validation of novel adeno-associated viral vectors for the analysis of Ca2+ homeostasis in motor neurons. Scientific Reports, 2017, 7, 6521.	1.6	9
27	Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovascular Diabetology, 2017, 16, 42.	2.7	80
28	Concise Review: Perspectives and Clinical Implications of Bone Marrow and Circulating Stem Cell Defects in Diabetes. Stem Cells, 2017, 35, 106-116.	1.4	76
29	Acute Effects of Linagliptin on Progenitor Cells, Monocyte Phenotypes, and Soluble Mediators in Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 748-756.	1.8	65
30	A perspective on NETosis in diabetes and cardiometabolic disorders. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 1-8.	1.1	45
31	NETosis Delays Diabetic Wound Healing in Mice and Humans. Diabetes, 2016, 65, 1061-1071.	0.3	233
32	Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Research and Therapy, 2015, 6, 209.	2.4	31
33	Short-term statin discontinuation increases endothelial progenitor cells without inflammatory rebound in type 2 diabetic patients. Vascular Pharmacology, 2015, 67-69, 21-29.	1.0	14
34	Sensory neuropathy hampers nociception-mediated bone marrow stem cell release in mice and patients with diabetes. Diabetologia, 2015, 58, 2653-2662.	2.9	33
35	Hypoglycemia affects the changes in endothelial progenitor cell levels during insulin therapy in type 2 diabetic patients. Journal of Endocrinological Investigation, 2015, 38, 733-738.	1.8	12
36	Direct effects of DPP-4 inhibition on the vasculature. Reconciling basic evidence with lack of clinical evidence. Vascular Pharmacology, 2015, 73, 1-3.	1.0	17

#	Article	IF	CITATIONS
37	Diabetes modifies the relationships among carotid plaque calcification, composition and inflammation. Atherosclerosis, 2015, 241, 533-538.	0.4	11
38	A Perspective on Sirtuins in the Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2015, 13, 161-164.	0.5	6
39	Bone Marrow Macrophages Contribute to Diabetic Stem Cell Mobilopathy by Producing Oncostatin M. Diabetes, 2015, 64, 2957-2968.	0.3	85
40	Diabetes Limits Stem Cell Mobilization Following G-CSF but Not Plerixafor. Diabetes, 2015, 64, 2969-2977.	0.3	50
41	NAD+-dependent SIRT1 deactivation has a key role on ischemia–reperfusion-induced apoptosis. Vascular Pharmacology, 2015, 70, 35-44.	1.0	48
42	Circulating Progenitor Cell Count Predicts Microvascular Outcomes in Type 2 Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2666-2672.	1.8	85
43	p66Shc deletion or deficiency protects from obesity but not metabolic dysfunction in mice and humans. Diabetologia, 2015, 58, 2352-2360.	2.9	29
44	NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetologica, 2015, 52, 497-503.	1.2	188
45	Endothelial Progenitor Cells Are Reduced in Acromegalic Patients and Can Be Restored by Treatment With Somatostatin Analogs. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2549-E2556.	1.8	8
46	Diabetes Causes Bone Marrow Autonomic Neuropathy and Impairs Stem Cell Mobilization via Dysregulated <i>p66Shc</i> and <i>Sirt1</i> . Diabetes, 2014, 63, 1353-1365.	0.3	131
47	The dipeptidyl peptidase-4 inhibitor Saxagliptin improves function of circulating pro-angiogenic cells from type 2 diabetic patients. Cardiovascular Diabetology, 2014, 13, 92.	2.7	25
48	Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 2014, 3, 29-41.	3.0	324
49	The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker. Diabetologia, 2014, 57, 1947-1956.	2.9	28
50	Circulating Cellular Players in Vascular Calcification. Current Pharmaceutical Design, 2014, 20, 5889-5896.	0.9	12
51	Restoring stem cell mobilization to promote vascular repair in diabetes. Vascular Pharmacology, 2013, 58, 253-258.	1.0	24
52	An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia, 2013, 56, 1856-1866.	2.9	119
53	Myeloid calcifying cells promote atherosclerotic calcification via paracrine activity and allograft inflammatory factor-1 overexpression. Basic Research in Cardiology, 2013, 108, 368.	2.5	28
54	Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans. Diabetes Care, 2013, 36, 943-949.	4.3	151

#	Article	IF	CITATIONS
55	Stem cell compartmentalization in diabetes and high cardiovascular risk reveals the role of DPP-4 in diabetic stem cell mobilopathy. Basic Research in Cardiology, 2013, 108, 313.	2.5	63
56	Circulating myeloid calcifying cells have antiangiogenic activity <i>via</i> thrombospondinâ€1 overexpression. FASEB Journal, 2013, 27, 4355-4365.	0.2	23
57	Strategies for Enhancing Progenitor Cell Mobilization and Function in Diabetes. Current Vascular Pharmacology, 2012, 10, 310-321.	0.8	5
58	Procalcific Phenotypic Drift of Circulating Progenitor Cells in Type 2 Diabetes with Coronary Artery Disease. Experimental Diabetes Research, 2012, 2012, 1-7.	3.8	42
59	Endothelial progenitor cells in diabetes mellitus. BioFactors, 2012, 38, 194-202.	2.6	73
60	The Peritoneum as a Natural Scaffold for Vascular Regeneration. PLoS ONE, 2012, 7, e33557.	1.1	11
61	The increased dipeptidyl peptidaseâ€4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metforminâ€treated patients. Diabetes, Obesity and Metabolism, 2012, 14, 518-522.	2.2	49
62	Endothelial Dysfunction in Diabetes. Diabetes Care, 2011, 34, S285-S290.	4.3	381
63	Defective recruitment, survival and proliferation of bone marrow-derived progenitor cells at sites of delayed diabetic wound healing in mice. Diabetologia, 2011, 54, 945-953.	2.9	70
64	Widespread Increase in Myeloid Calcifying Cells Contributes to Ectopic Vascular Calcification in Type 2 Diabetes. Circulation Research, 2011, 108, 1112-1121.	2.0	109
65	Circulating Smooth Muscle Progenitors and Atherosclerosis. Trends in Cardiovascular Medicine, 2010, 20, 133-140.	2.3	24
66	Improved Function of Circulating Angiogenic Cells Is Evident in Type 1 Diabetic Islet-Transplanted Patients. American Journal of Transplantation, 2010, 10, 2690-2700.	2.6	22
67	The Oral Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Increases Circulating Endothelial Progenitor Cells in Patients With Type 2 Diabetes. Diabetes Care, 2010, 33, 1607-1609.	4.3	299
68	Pharmacologic Targeting of Endothelial Progenitor Cells. Cardiovascular & Hematological Disorders Drug Targets, 2010, 10, 16-32.	0.2	10
69	The Redox Enzyme p66Shc Contributes to Diabetes and Ischemia-Induced Delay in Cutaneous Wound Healing. Diabetes, 2010, 59, 2306-2314.	0.3	83
70	Selective estrogen receptorâ€Î± agonist provides widespread heart and vascular protection with enhanced endothelial progenitor cell mobilization in the absence of uterotrophic action. FASEB Journal, 2010, 24, 2262-2272.	0.2	34
71	Rosuvastatin stimulates clonogenic potential and anti-inflammatory properties of endothelial progenitor cells. Cell Biology International, 2010, 34, 709-715.	1.4	23
72	Endothelial progenitor cells as resident accessory cells for post-ischemic angiogenesis. Atherosclerosis, 2009, 204, 20-22.	0.4	18

#	Article	IF	CITATIONS
73	Effects of androgens on endothelial progenitor cells <i>in vitro</i> and <i>in vivo</i> . Clinical Science, 2009, 117, 355-364.	1.8	33
74	Technical notes on endothelial progenitor cells: Ways to escape from the knowledge plateau. Atherosclerosis, 2008, 197, 496-503.	0.4	233
75	44 ROSUVASTATIN PROMOTES EXPANSION OF HUMAN ENDOTHELIAL PROGENITOR CELLS. EVIDENCES FROM MULTIPLE CULTURE PROTOCOLS. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18, S45-S46.	1.1	1
76	Gender Differences in Endothelial Progenitor Cells and Cardiovascular Risk Profile. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 997-1004.	1.1	162
77	Rosiglitazone Reduces Glucose-Induced Oxidative Stress Mediated by NAD(P)H Oxidase via AMPK-Dependent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2627-2633.	1.1	205
78	Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia–reperfusion injury in rats. Diabetologia, 2006, 49, 3075-3084.	2.9	250
79	Number and Function of Endothelial Progenitor Cells as a Marker of Severity for Diabetic Vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2140-2146.	1.1	393