Mara Elga Medeiros Braga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9164660/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intraocular implants loaded with A3R agonist rescue retinal ganglion cells from ischemic damage. Journal of Controlled Release, 2022, 343, 469-481.	4.8	8
2	Sequential scCO2 drying and sterilisation of alginate-gelatine aerogels for biomedical applications. Journal of Supercritical Fluids, 2022, 184, 105570.	1.6	8
3	Effects of a bionematicide 1,4-naphthoquinone solution on soil microbial community assessed by PLFA: Tracing toxicity indicators. Applied Soil Ecology, 2022, 174, 104417.	2.1	3
4	Juglone and 1,4-Naphthoquinone—Promising Nematicides for Sustainable Control of the Root Knot Nematode Meloidogyne luci. Frontiers in Plant Science, 2022, 13, .	1.7	7
5	Chitosan-xanthan gum PEC-based aerogels: A chemically stable PEC in scCO2. Materials Chemistry and Physics, 2022, 287, 126294.	2.0	9
6	Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. Journal of Supercritical Fluids, 2022, 188, 105652.	1.6	23
7	Biocompounds recovery from olive mill wastewater by liquid-liquid extraction and integration with Fenton's process for water reuse. Environmental Science and Pollution Research, 2021, 28, 29521-29534.	2.7	6
8	Biodegradable film production from agroforestry and fishery residues with active compounds. Food Packaging and Shelf Life, 2021, 28, 100661.	3.3	8
9	Using High-Pressure Technology to Develop Antioxidant-Rich Extracts from Bravo de Esmolfe Apple Residues. Antioxidants, 2021, 10, 1469.	2.2	4
10	Integrated management of residues from tomato production: Recovery of value-added compounds and biogas production in the biorefinery context. Journal of Environmental Management, 2021, 299, 113505.	3.8	12
11	Environmentally-safe scCO2 P. pinaster branches extracts: Composition and properties. Journal of CO2 Utilization, 2020, 37, 74-84.	3.3	4
12	Bioactive compounds of Copaifera sp. impregnated into three-dimensional gelatin dressings. Drug Delivery and Translational Research, 2020, 10, 1537-1551.	3.0	4
13	Two-step high pressure solvent extraction of walnut (Juglans regia L.) husks: scCO2 + CO2/ethanol/H2O. Journal of CO2 Utilization, 2019, 34, 375-385.	3.3	17
14	Assessment of Agroforestry Residues: Their Potential within the Biorefinery Context. ACS Sustainable Chemistry and Engineering, 2019, 7, 17154-17165.	3.2	22
15	Porous poly(ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery. Journal of Controlled Release, 2019, 316, 331-348.	4.8	50
16	Influence of solvent additives on the aqueous extraction of tannins from pine bark: potential extracts for leather tanning. Journal of Chemical Technology and Biotechnology, 2018, 93, 1169-1182.	1.6	27
17	Supercritical solvent impregnation/deposition of spilanthol-enriched extracts into a commercial collagen/cellulose-based wound dressing. Journal of Supercritical Fluids, 2018, 133, 503-511.	1.6	24
18	Mathematical modelling of turmeric compounds extraction using high pressurized solvents mixture. Journal of Supercritical Fluids, 2018, 140, 348-355.	1.6	7

#	Article	IF	CITATIONS
19	Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals – A comprehensive review. Advanced Drug Delivery Reviews, 2018, 131, 22-78.	6.6	173
20	Towards wound dressings with improved properties: Effects of poly(dimethylsiloxane) on chitosan-alginate films loaded with thymol and beta-carotene. Materials Science and Engineering C, 2018, 93, 595-605.	3.8	57
21	Supercritical processing of starch aerogels and aerogel-loaded poly(ε-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. Journal of CO2 Utilization, 2017, 18, 237-249.	3.3	80
22	Copaiba oil-loaded commercial wound dressings using supercritical CO 2 : A potential alternative topical antileishmanial treatment. Journal of Supercritical Fluids, 2017, 129, 106-115.	1.6	25
23	Naphthoquinones from Walnut Husk Residues Show Strong Nematicidal Activities against the Root-knot Nematode <i>Meloidogyne hispanica</i> . ACS Sustainable Chemistry and Engineering, 2017, 5, 3390-3398.	3.2	38
24	Toxicity of the bionematicide 1,4-naphthoquinone on non-target soil organisms. Chemosphere, 2017, 181, 579-588.	4.2	21
25	Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Materials Science and Engineering C, 2017, 77, 333-341.	3.8	53
26	Temperature and density effects of the scCO2extraction of spilanthol from Spilanthes acmella flowers. Journal of Supercritical Fluids, 2017, 121, 32-40.	1.6	13
27	Alkaloids from Chelidonium majus L.: Fractionated supercritical CO2 extraction with co-solvents. Separation and Purification Technology, 2016, 165, 199-207.	3.9	27
28	Effect of scCO2 sorption capacity on the total amount of borage oil loaded by scCO2 impregnation/deposition into a polyurethane-based wound dressing. Journal of Supercritical Fluids, 2016, 115, 1-9.	1.6	9
29	Novel flexible, hybrid aerogels with vinyl- and methyltrimethoxysilane in the underlying silica structure. Journal of Materials Science, 2016, 51, 6781-6792.	1.7	48
30	Effects of supercritical carbon dioxide processing on the properties of chitosan–alginate membranes. Journal of Supercritical Fluids, 2016, 112, 128-135.	1.6	20
31	Osteogenic poly(ϵ-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming. International Journal of Pharmaceutics, 2015, 479, 11-22.	2.6	10
32	Solubility of all-trans retinoic acid in supercritical carbon dioxide. Journal of Supercritical Fluids, 2015, 98, 70-78.	1.6	15
33	CopaÃba (Copaifera sp.) leaf extracts obtained by CO2 supercritical fluid extraction: Isotherms of global yield, kinetics data, antioxidant activity and neuroprotective effects. Journal of Supercritical Fluids, 2015, 98, 167-171.	1.6	28
34	Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT - Food Science and Technology, 2014, 57, 494-501.	2.5	73
35	Control of the properties of porous chitosan–alginate membranes through the addition of different proportions of Pluronic F68. Materials Science and Engineering C, 2014, 44, 117-125.	3.8	45
36	Influence of natamycin loading methods on the physical characteristics of alginate active films. Journal of Supercritical Fluids, 2013, 76, 74-82.	1.6	46

#	Article	IF	CITATIONS
37	Dexamethasone-loaded poly(É>-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. International Journal of Pharmaceutics, 2013, 456, 269-281.	2.6	53
38	Wound dressings loaded with an anti-inflammatory jucá (Libidibia ferrea) extract using supercritical carbon dioxide technology. Journal of Supercritical Fluids, 2013, 74, 34-45.	1.6	69
39	CHAPTER 7. Recent Trends and Perspectives for the Extraction of Natural Products. RSC Green Chemistry, 2013, , 231-284.	0.0	2
40	SCF-assisted processing of dexamethasone-loaded poly(ε-caprolactone)/MCM-41 materials for biomedical applications. , 2012, , .		1
41	Solubility of Dexamethasone in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2012, 57, 3756-3760.	1.0	32
42	Solubility of norfloxacin and ofloxacin in supercritical carbon dioxide. Fluid Phase Equilibria, 2012, 331, 6-11.	1.4	27
43	Adsorbent Derived from <i>Pinus pinaster</i> Tannin for Cationic Surfactant Removal. Journal of Wood Chemistry and Technology, 2012, 32, 28-50.	0.9	6
44	Antifouling foldable acrylic IOLs loaded with norfloxacin by aqueous soaking and by supercritical carbon dioxide technology. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 383-391.	2.0	46
45	Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). Acta Biomaterialia, 2012, 8, 1366-1379.	4.1	62
46	Spilanthol from Spilanthes acmella flowers, leaves and stems obtained by selective supercritical carbon dioxide extraction. Journal of Supercritical Fluids, 2012, 61, 62-70.	1.6	76
47	High pressure solvent extraction of maritime pine bark: Study of fractionation, solvent flow rate and solvent composition. Journal of Supercritical Fluids, 2012, 62, 135-148.	1.6	32
48	Statistical mixture design investigation of CO2–Ethanol–H2O pressurized solvent extractions from tara seed coat. Journal of Supercritical Fluids, 2012, 64, 9-18.	1.6	20
49	Biodiesel obtained from supercritical carbon dioxide oil of Cynara cardunculus L Journal of Supercritical Fluids, 2012, 68, 52-63.	1.6	25
50	Supercritical Solvent Impregnation of Natural Bioactive Compounds in N-Carboxybutylchitosan and Agarose Membranes for the Development of Topical Wound Healing Applications. Lecture Notes in Computational Vision and Biomechanics, 2012, , 243-266.	0.5	1
51	Measurement and Correlation of 1,4-Naphthoquinone and of Plumbagin Solubilities in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2011, 56, 4173-4182.	1.0	13
52	Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon A commercial contact lenses. International Journal of Pharmaceutics, 2011, 420, 231-243.	2.6	43
53	Measurement and correlation of the solubility of juglone in supercritical carbon dioxide. Fluid Phase Equilibria, 2011, 311, 1-8.	1.4	35
54	Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery. Acta Biomaterialia. 2011. 7. 1019-1030.	4.1	99

#	Article	IF	CITATIONS
55	Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. International Journal of Pharmaceutics, 2011, 408, 9-19.	2.6	159
56	Fractioned High Pressure Extraction of Anthocyanins from Elderberry (Sambucus nigra L.) Pomace. Food and Bioprocess Technology, 2010, 3, 674-683.	2.6	61
57	Supercritical solvent impregnation of natural bioactive compounds in N -carboxybutyl chitosan membranes for the development of topical wound healing applications. Journal of Controlled Release, 2010, 148, e33-e35.	4.8	10
58	Improved drug loading/release capacities of commercial contact lenses obtained by supercritical fluid assisted molecular imprinting methods. Journal of Controlled Release, 2010, 148, e102-e104.	4.8	24
59	Development of therapeutic contact lenses using a supercritical solvent impregnation method. Journal of Supercritical Fluids, 2010, 52, 306-316.	1.6	97
60	Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation. Journal of Supercritical Fluids, 2010, 53, 165-173.	1.6	86
61	Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace. Journal of Supercritical Fluids, 2010, 54, 145-152.	1.6	109
62	Processing cherries (Prunus avium) using supercritical fluid technology. Part 1: Recovery of extract fractions rich in bioactive compounds. Journal of Supercritical Fluids, 2010, 55, 184-191.	1.6	94
63	Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives. Journal of Supercritical Fluids, 2008, 44, 245-257.	1.6	101
64	Fractioned SFE of antioxidants from maritime pine bark. Journal of Supercritical Fluids, 2008, 47, 37-48.	1.6	50
65	Supercritical fluid extraction of vetiver roots: A study of SFE kinetics. Journal of Supercritical Fluids, 2008, 47, 200-208.	1.6	28
66	ACCELERATED SOLVENT EXTRACTION AND FRACTIONED EXTRACTION TO OBTAIN THE <i>CURCUMA LONGA </i> VOLATILE OIL AND OLEORESIN. Journal of Food Process Engineering, 2007, 30, 501-521.	1.5	32
67	Ginger and turmeric starches hydrolysis using subcritical water + CO2: the effect of the SFE pre-treatment. Brazilian Journal of Chemical Engineering, 2006, 23, 235-242.	0.7	37
68	Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches. Carbohydrate Polymers, 2006, 63, 340-346.	5.1	104
69	Supercritical fluid extraction from Lippia alba: global yields, kinetic data, and extract chemical composition. Journal of Supercritical Fluids, 2005, 34, 149-156.	1.6	53
70	Comparison of Yield, Composition, and Antioxidant Activity of Turmeric (Curcuma longaL.) Extracts Obtained Using Various Techniques. Journal of Agricultural and Food Chemistry, 2003, 51, 6604-6611.	2.4	192
71	Functional Properties of Spice Extracts Obtained via Supercritical Fluid Extraction. Journal of Agricultural and Food Chemistry, 2003, 51, 2520-2525.	2.4	123