Sungsoo Na

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9164637/publications.pdf

Version: 2024-02-01

		430442	552369
85	1,049	18	26
papers	citations	h-index	g-index
85	85	85	1024
0.5	03	03	1027
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct Yaw Moment Control with 4WD Torque-Vectoring for Vehicle Handling Stability and Agility. International Journal of Automotive Technology, 2022, 23, 555-565.	0.7	8
2	Synergistic enhanced rolling circle amplification based on mutS and radical polymerization for single-point mutation DNA detection. Biosensors and Bioelectronics, 2022, 210, 114295.	5.3	13
3	Novel Detection Method for Circulating EGFR Tumor DNA Using Gravitationally Condensed Gold Nanoparticles and Catalytic Walker DNA. Materials, 2022, 15, 3301.	1.3	2
4	Analysis of Sensitivity for Chassis Design Parameters on X-wind Stability. Transactions of the Korean Society of Automotive Engineers, 2021, 29, 569-588.	0.1	0
5	Nano-fishnet formation of silk controlled by Arginine density. Acta Biomaterialia, 2021, 128, 201-208.	4.1	7
6	Enhancement of electrode performance through surface modification using carbon nanotubes and porous gold nanostructures. Nanotechnology, 2021, 32, 505502.	1.3	3
7	Detection and discrimination of single nucleotide polymorphisms by exploiting metal ion-mediated DNA duplex. Sensors and Actuators B: Chemical, 2020, 305, 127493.	4.0	13
8	Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111269.	2.5	4
9	A method for highly sensitive detection of silver nanoparticles using a micro-resonator and DNA assisted conjugation. Journal of Mechanical Science and Technology, 2020, 34, 1675-1681.	0.7	2
10	Bioinspired Micro Glue Threads Fabricated by Liquid Bridge-to-Solidification as an Effective Sensing Platform. ACS Sensors, 2020, 5, 1977-1986.	4.0	5
11	Spider silk with weaker bonding resulting in higher strength and toughness through progressive unfolding and load transfer. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108, 103773.	1.5	13
12	Effects of the Hydrophobicity of Key Residues on the Characteristics and Stability of Glucose Oxidase on a Graphene Surface. ACS Biomaterials Science and Engineering, 2020, 6, 1899-1908.	2.6	10
13	Highly sensitive and selective detection of single-nucleotide polymorphisms using gold nanoparticle MutS enzymes and a micro cantilever resonator. Talanta, 2019, 205, 120154.	2.9	16
14	The Formation Mechanism of Segmented Ring-Shaped A \hat{l}^2 Oligomers and Protofibrils. ACS Chemical Neuroscience, 2019, 10, 3830-3838.	1.7	6
15	Artificial spider silk is smart like natural one: having humidity-sensitive shape memory with superior recovery stress. Materials Chemistry Frontiers, 2019, 3, 2472-2482.	3.2	34
16	Double amplified colorimetric detection of DNA using gold nanoparticles, enzymes and a catalytic hairpin assembly. Mikrochimica Acta, 2019, 186, 34.	2.5	27
17	Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Colloids and Surfaces B: Biointerfaces, 2019, 173, 128-138.	2.5	3
18	A technique for highly sensitive detection of mercury ions using DNA-functionalized gold nanoparticles and resonators based on a resonance frequency shift. Journal of Mechanical Science and Technology, 2018, 32, 799-804.	0.7	12

#	Article	IF	CITATIONS
19	Metal ions affect the formation and stability of amyloid \hat{l}^2 aggregates at multiple length scales. Physical Chemistry Chemical Physics, 2018, 20, 8951-8961.	1.3	39
20	Target switching catalytic hairpin assembly and gold nanoparticle colorimetric for EGFR mutant detection. Sensors and Actuators B: Chemical, 2018, 261, 497-504.	4.0	30
21	Loading-device effects on the protein-unfolding mechanisms using molecular-dynamic simulations. Journal of Molecular Graphics and Modelling, 2018, 81, 162-167.	1.3	1
22	Mechanical features of various silkworm crystalline considering hydration effect via molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1360-1368.	2.0	9
23	Capping effects on polymorphic Aβ 16–21 amyloids depend on their size: A molecular dynamics simulation study. Biophysical Chemistry, 2018, 232, 1-11.	1.5	3
24	Internal interaction changes within the mutation of SLC26A4 STAS domain. Chemical Physics Letters, 2018, 710, 226-233.	1,2	1
25	Lengthâ€Dependent Manifestation of Vibration Modes Regulates a Specific Intermediate Morphology of Aβ17â€42 in Different Environments. ChemPhysChem, 2018, 19, 1643-1654.	1.0	1
26	Mechanically inferior constituents in spider silk result in mechanically superior fibres by adaptation to harsh hydration conditions: a molecular dynamics study. Journal of the Royal Society Interface, 2018, 15, 20180305.	1.5	9
27	In-situ and highly sensitive detection of epidermal growth factor receptor mutation using nano-porous quartz crystal microbalance. Journal of Mechanical Science and Technology, 2018, 32, 1927-1932.	0.7	16
28	Highly sensitive detection of silver ions using a silver-specific DNA based nano-porous micro-resonator. New Journal of Chemistry, 2017, 41, 1840-1845.	1.4	9
29	Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules. ChemPhysChem, 2017, 18, 817-827.	1.0	7
30	A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as a mass amplifier. Nanotechnology, 2017, 28, 245501.	1.3	8
31	Mechanical and vibrational characterization of amyloid-like HET-s nanosheets based on the skewed plate theory. Physical Chemistry Chemical Physics, 2017, 19, 11492-11501.	1.3	0
32	Structural analysis of oligomeric and protofibrillar $A\hat{l}^2$ amyloid pair structures considering F20L mutation effects using molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2017, 85, 580-592.	1.5	1
33	Label-free and high-sensitive detection of Kirsten rat sarcoma viral oncogene homolog and epidermal growth factor receptor mutation using Kelvin probe force microscopy. Biosensors and Bioelectronics, 2017, 87, 222-228.	5. 3	21
34	Effects of End-Terminal Capping on Transthyretin (105–115) Amyloid Protofibrils Using Steered Molecular Dynamics. Journal of Nanomaterials, 2016, 2016, 1-10.	1,5	4
35	Sodium chloride's effect on selfâ€assembly of diphenylalanine bilayer. Journal of Computational Chemistry, 2016, 37, 1839-1846.	1.5	9
36	Impact of solvent on silk materials. , 2016, , .		0

#	Article	IF	Citations
37	Understanding structural characteristics of out-of-register hIAPP amyloid proteins via molecular dynamics. RSC Advances, 2016, 6, 77666-77672.	1.7	3
38	The effect of structural heterogeneity on the conformation and stability of Aβ–tau mixtures. RSC Advances, 2016, 6, 52236-52247.	1.7	13
39	Biophysical characterization of cofilin-induced extension–torsion coupling in actin filaments. Journal of Biomechanics, 2016, 49, 1831-1835.	0.9	2
40	Steered molecular dynamics analysis of the role of cofilin in increasing the flexibility of actin filaments. Biophysical Chemistry, 2016, 218, 27-35.	1.5	10
41	Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA. Nanotechnology, 2016, 27, 365501.	1.3	5
42	Detection of Silver lons Using Dielectrophoretic Tweezers-Based Force Spectroscopy. Analytical Chemistry, 2016, 88, 10867-10875.	3.2	28
43	Highly sensitive, direct and real-time detection of silver nanowires by using a quartz crystal microbalance. Nanotechnology, 2016, 27, 475506.	1.3	2
44	End Capping Alters the Structural Characteristics and Mechanical Properties of Transthyretin (105–115) Amyloid Protofibrils. ChemPhysChem, 2016, 17, 425-432.	1.0	14
45	Mechanical behavior comparison of spider and silkworm silks using molecular dynamics at atomic scale. Physical Chemistry Chemical Physics, 2016, 18, 4814-4821.	1.3	26
46	Conformational changes of $\hat{Al^2}$ ($1\hat{a}$ \in "42) monomers in different solvents. Journal of Molecular Graphics and Modelling, 2016, 65, 8-14.	1.3	14
47	Influence of Aromatic Residues on the Material Characteristics of $\hat{Al^2}$ Amyloid Protofibrils at the Atomic Scale. ChemPhysChem, 2015, 16, 2403-2414.	1.0	15
48	In situ and fast detection of single-walled carbon nanotubes by using DNA mediated aggregation method and quartz crystal microbalance. Journal of Applied Physics, 2015, 118, 034510.	1.1	2
49	The molecular mechanism of conformational changes of the triplet prion fibrils for pH. RSC Advances, 2015, 5, 49263-49269.	1.7	13
50	Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations. Physical Biology, 2015, 12, 066021.	0.8	13
51	Relationship between structural composition and material properties of polymorphic hIAPP fibrils. Biophysical Chemistry, 2015, 199, 1-8.	1.5	19
52	Label-free detection of zinc oxide nanowire using a graphene wrapping method. Biosensors and Bioelectronics, 2015, 68, 481-486.	5.3	6
53	Identification of tail binding effect of kinesin-1 using an elastic network model. Biomechanics and Modeling in Mechanobiology, 2015, 14, 1107-1117.	1.4	4
54	A highly sensitive, direct and label-free technique for Hg ²⁺ detection using Kelvin probe force microscopy. Nanotechnology, 2015, 26, 305501.	1.3	18

#	Article	IF	CITATIONS
55	Cofilin reduces the mechanical properties of actin filaments: approach with coarse-grained methods. Physical Chemistry Chemical Physics, 2015, 17, 8148-8158.	1.3	12
56	Effects of lysine residues on structural characteristics and stability of tau proteins. Biochemical and Biophysical Research Communications, 2015, 466, 486-492.	1.0	12
57	Ultra-sensitive in situ detection of silver ions using a quartz crystal microbalance. New Journal of Chemistry, 2015, 39, 8028-8034.	1.4	12
58	The bond survival time variation of polymorphic amyloid fibrils in the mechanical insight. Chemical Physics Letters, 2014, 600, 68-72.	1.2	23
59	Multimodal label-free detection and discrimination for small molecules using a nanoporous resonator. Nature Communications, 2014, 5, 3456.	5.8	19
60	Ultra-sensitive direct detection of silver ions via Kelvin probe force microscopy. Biosensors and Bioelectronics, 2014, 60, 299-304.	5.3	33
61	Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils. PLoS ONE, 2014, 9, e88502.	1.1	51
62	Highly sensitive detection of self-aggregated single-walled carbon nanotubes using a DNA-immobilized resonator. Chemical Communications, 2013, 49, 8635.	2.2	11
63	Dynamic response of coupled shaft torsion and blade bending in rotor blade system. Journal of Mechanical Science and Technology, 2013, 27, 2585-2597.	0.7	14
64	Robust aeroelastic instability suppression of an advanced wing with model uncertainty in subsonic compressible flow field. Aerospace Science and Technology, 2013, 25, 242-252.	2.5	18
65	High-sensitivity detection of silver ions using oligonucleotide-immobilized oscillator. Biosensors and Bioelectronics, 2013, 41, 471-476.	5.3	31
66	Relationship between disease-specific structures of amyloid fibrils and their mechanical properties. Applied Physics Letters, 2013, 102, .	1.5	29
67	BC-KR-3 The Study of Unfolding Mechanics for Ubiquitin Using Brownian Dynamic Simulation. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _BC-KR-3-1BC-KR-3-2.	0.0	0
68	BC-KR-5 Coarse-Grained Computational Mechanics for Protein Dynamics. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _BC-KR-5-1BC-KR-5-2.	0.0	0
69	Mechanical Characterization of Amyloid Fibrils Using Coarseâ€Grained Normal Mode Analysis. Advanced Functional Materials, 2011, 21, 3454-3463.	7.8	56
70	Domain decompositionâ€based structural condensation of large protein structures for understanding their conformational dynamics. Journal of Computational Chemistry, 2011, 32, 161-169.	1.5	6
71	Dynamic aeroelastic response and active control of composite thin-walled beam structures in compressible flow. Journal of Sound and Vibration, 2011, 330, 4998-5013.	2.1	26
72	Noise reduction of a high-speed printing system using optimized gears based on Taguchi's method. Journal of Mechanical Science and Technology, 2010, 24, 2383-2393.	0.7	8

#	Article	IF	Citations
73	Sliding mode robust control of supersonic three degrees-of-freedom airfoils. International Journal of Control, Automation and Systems, 2010, 8, 279-288.	1.6	14
74	Mesoscopic model for mechanical characterization of biological protein materials. Journal of Computational Chemistry, 2009, 30, 873-880.	1.5	21
75	Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady Temperature and External Excitation. Journal of Thermal Stresses, 2009, 32, 209-225.	1.1	5
76	Large Protein Dynamics Described by Hierarchical-Component Mode Synthesis. Journal of Chemical Theory and Computation, 2009, 5, 1931-1939.	2.3	11
77	Modified mechanical mass-spring model of biomolecules for understanding dynamics of proteins. Journal of Mechanical Science and Technology, 2008, 22, 506-513.	0.7	3
78	Dynamic Response Control of Rotating Composite Booms Under Solar Radiation. Journal of Thermal Stresses, 2008, 32, 21-40.	1.1	8
79	Coarse-graining of protein structures for the normal mode studies. Journal of Computational Chemistry, 2007, 28, 1400-1410.	1.5	37
80	Dynamic response analysis of rotating composite-VEM thin-walled beams incorporating viscoelastic materials in the time domain. Journal of Mechanical Science and Technology, 2006, 20, 1139-1148.	0.7	4
81	Comparative study on vibration control methodologies applied to adaptive thin-walled anisotropic cantilevers. European Journal of Mechanics, A/Solids, 2005, 24, 661-675.	2.1	7
82	Modeling of a hybrid passive damping system. Journal of Mechanical Science and Technology, 2005, 19, 127-135.	0.7	3
83	Robust state estimation based on sliding mode observer for aeroelastic system. Journal of Mechanical Science and Technology, 2005, 19, 540-548.	0.7	7
84	Aeroelastic response of an airfoil-flap system exposed to time-dependent disturbances. Journal of Mechanical Science and Technology, 2004, 18, 560-572.	0.4	5
85	Modeling and vibration feedback control of rotating tapered composite thin-walled blade. Journal of Mechanical Science and Technology, 2003, 17, 380-390.	0.4	10