List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9164612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Science Advances, 2015, 1, e1500533.	4.7	312
2	Highly Conductive, Flexible, and Compressible Allâ€Graphene Passive Electronic Skin for Sensing Human Touch. Advanced Materials, 2014, 26, 5018-5024.	11.1	273
3	Sheath-run artificial muscles. Science, 2019, 365, 150-155.	6.0	218
4	Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Applied Catalysis B: Environmental, 2020, 265, 118539.	10.8	204
5	Ultrathin, Washable, and Largeâ€Area Graphene Papers for Personal Thermal Management. Small, 2017, 13, 1702645.	5.2	177
6	P25–graphene hydrogels: Room-temperature synthesis and application for removal of methylene blue from aqueous solution. Journal of Hazardous Materials, 2012, 205-206, 229-235.	6.5	176
7	Advanced Functional Fiber and Smart Textile. Advanced Fiber Materials, 2019, 1, 3-31.	7.9	169
8	Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nature Communications, 2018, 9, 590.	5.8	159
9	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497.	11.1	147
10	Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nature Communications, 2021, 12, 1587.	5.8	143
11	lon-Transport Design for High-Performance Na ⁺ -Based Electrochromics. ACS Nano, 2018, 12, 3759-3768.	7.3	136
12	Fluoroalkylsilane-Modified Textile-Based Personal Energy Management Device for Multifunctional Wearable Applications. ACS Applied Materials & Interfaces, 2016, 8, 4676-4683.	4.0	130
13	Continuous and scalable manufacture of amphibious energy yarns and textiles. Nature Communications, 2019, 10, 868.	5.8	121
14	All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nature Communications, 2019, 10, 5541.	5.8	121
15	Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C3N4. Applied Catalysis B: Environmental, 2019, 243, 136-144.	10.8	117
16	A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosensors and Bioelectronics, 2021, 174, 112828.	5.3	113
17	A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications. Scientific Reports, 2013, 3, 3138.	1.6	112
18	MXene-Coated Air-Permeable Pressure-Sensing Fabric for Smart Wear. ACS Applied Materials & Interfaces, 2020, 12, 46446-46454.	4.0	111

#	Article	IF	CITATIONS
19	One-step synthesis of magnetically-functionalized reduced graphite sheets and their use in hydrogels. Carbon, 2011, 49, 47-53.	5.4	107
20	High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy, 2015, 12, 26-32.	8.2	101
21	Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Materials, 2019, 16, 212-219.	9.5	99
22	Highâ€Performance Flexible Thermoelectric Devices Based on Allâ€Inorganic Hybrid Films for Harvesting Lowâ€Grade Heat. Advanced Functional Materials, 2019, 29, 1900304.	7.8	97
23	WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 4845-4855.	3.8	96
24	A Moisture-Wicking Passive Radiative Cooling Hierarchical Metafabric. ACS Nano, 2022, 16, 2188-2197.	7.3	96
25	A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. Scientific Reports, 2015, 5, 9503.	1.6	91
26	Synergistic Solvation and Interface Regulations of Ecoâ€Friendly Silk Peptide Additive Enabling Stable Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	91
27	Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Materials Horizons, 2019, 6, 571-579.	6.4	90
28	S, N Co-Doped Graphene Quantum Dot/TiO2 Composites for Efficient Photocatalytic Hydrogen Generation. Nanoscale Research Letters, 2017, 12, 400.	3.1	87
29	Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 46005-46014.	4.0	87
30	Preparation and magnetic property analysis of monodisperse Co–Zn ferrite nanospheres. Journal of Alloys and Compounds, 2010, 491, 431-435.	2.8	83
31	Metal–Organic Framework Derived Iron Sulfide–Carbon Core–Shell Nanorods as a Conversion-Type Battery Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 5039-5048.	3.2	82
32	Infrared-Radiation-Enhanced Nanofiber Membrane for Sky Radiative Cooling of the Human Body. ACS Applied Materials & Interfaces, 2019, 11, 44673-44681.	4.0	82
33	Graphene–polymer hydrogels with stimulus-sensitive volume changes. Carbon, 2012, 50, 1959-1965.	5.4	81
34	Lattice-contraction triggered synchronous electrochromic actuator. Nature Communications, 2018, 9, 4798.	5.8	80
35	Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Highâ€energy, Safe and Adaptable Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000709.	10.2	79
36	Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. Journal of Materials Chemistry, 2012, 22, 14991.	6.7	76

#	Article	IF	CITATIONS
37	Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator. Nano Energy, 2020, 67, 104206.	8.2	76
38	A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy, 2017, 39, 673-683.	8.2	71
39	Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. Advanced Materials, 2021, 33, e2100782.	11.1	68
40	Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage. Materials Chemistry Frontiers, 2017, 1, 37-60.	3.2	67
41	Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry, 2016, 109, 87-94.	2.4	66
42	Cobalt nitride nanoparticle coated hollow carbon spheres with nitrogen vacancies as an electrocatalyst for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 14498-14505.	5.2	66
43	Interlocked graphene–Prussian blue hybrid composites enable multifunctional electrochemical applications. Biosensors and Bioelectronics, 2017, 89, 570-577.	5.3	62
44	Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Materials Chemistry Frontiers, 2018, 2, 1944-1986.	3.2	59
45	Selfâ€Powered Interactive Fiber Electronics with Visual–Digital Synergies. Advanced Materials, 2021, 33, e2104681.	11.1	58
46	Wearable Thermoelectric Devices Based on Au-Decorated Two-Dimensional MoS ₂ . ACS Applied Materials & Interfaces, 2018, 10, 33316-33321.	4.0	57
47	A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chemical Engineering Journal, 2019, 375, 121922.	6.6	57
48	Hierarchical Composite olidâ€Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultraâ€6table Lithium Batteries. Advanced Functional Materials, 2021, 31, .	7.8	57
49	MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Research, 2018, 11, 5866-5878.	5.8	55
50	Highly Integrable Thermoelectric Fiber. ACS Applied Materials & Interfaces, 2020, 12, 33297-33304.	4.0	54
51	Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation. Materials Chemistry and Physics, 2012, 135, 826-831.	2.0	53
52	Facile synthesis of water-dispersible Cu2O nanocrystal–reduced graphene oxide hybrid as a promising cancer therapeutic agent. Nanoscale, 2013, 5, 1227.	2.8	53
53	Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors. Scientific Reports, 2014, 4, 4248.	1.6	53
54	Wicking–Polarizationâ€Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles. Advanced Materials, 2021, 33, e2007352.	11.1	53

#	Article	IF	CITATIONS
55	Dual-Mechanism and Multimotion Soft Actuators Based on Commercial Plastic Film. ACS Applied Materials & Interfaces, 2018, 10, 15122-15128.	4.0	52
56	Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring. Chemical Engineering Journal, 2022, 431, 134012.	6.6	52
57	Constructing three-dimensional quasi-vertical nanosheet architectures from self-assemble two-dimensional WO 3 ·2H 2 O for efficient electrochromic devices. Applied Surface Science, 2016, 380, 281-287.	3.1	48
58	Solutionâ€Processed Porous Tungsten Molybdenum Oxide Electrodes for Energy Storage Smart Windows. Advanced Materials Technologies, 2017, 2, 1700047.	3.0	48
59	Continuously Processed, Long Electrochromic Fibers with Multi-Environmental Stability. ACS Applied Materials & Interfaces, 2020, 12, 28451-28460.	4.0	48
60	Flexible and thermostable thermoelectric devices based on large-area and porous all-graphene films. Carbon, 2016, 107, 146-153.	5.4	47
61	Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. Journal of Materials Chemistry C, 2017, 5, 9778-9785.	2.7	46
62	1T-Molybdenum disulfide/reduced graphene oxide hybrid fibers as high strength fibrous electrodes for wearable energy storage. Journal of Materials Chemistry A, 2019, 7, 3143-3149.	5.2	45
63	Three-Dimensional Hierarchically Porous Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Applied Materials & Interfaces, 2019, 11, 25205-25217.	4.0	45
64	A remote controllable fiber-type near-infrared light-responsive actuator. Chemical Communications, 2017, 53, 11118-11121.	2.2	43
65	Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. Journal of Materials Chemistry C, 2017, 5, 11448-11453.	2.7	41
66	Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. Chemical Engineering Journal, 2021, 417, 127912.	6.6	40
67	Thermochromic Hydrogel-Functionalized Textiles for Synchronous Visual Monitoring of On-Demand <i>In Vitro</i> Drug Release. ACS Applied Materials & Interfaces, 2020, 12, 51225-51235.	4.0	39
68	Versatile mechanically strong and highly conductive chemically converted graphene aerogels. Carbon, 2017, 125, 352-359.	5.4	38
69	High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers. Electrochimica Acta, 2021, 395, 139141.	2.6	38
70	From carbon nanotubes to highly adaptive and flexible high-performance thermoelectric generators. Nano Energy, 2021, 89, 106487.	8.2	34
71	Highâ€Performance Ionic Thermoelectric Supercapacitor for Integrated Energy Conversionâ€Storage. Energy and Environmental Materials, 2022, 5, 954-961.	7.3	33
72	Transparent Metal–Organic Framework-Based Gel Electrolytes for Generalized Assembly of Quasi-Solid-State Electrochromic Devices. ACS Applied Materials & Interfaces, 2020, 12, 42955-42961.	4.0	32

#	Article	IF	CITATIONS
73	Flexible 3D Porous MoS ₂ /CNTs Architectures with <i>ZT</i> of 0.17 at Room Temperature for Wearable Thermoelectric Applications. Advanced Functional Materials, 2020, 30, 2002508.	7.8	31
74	Metal–Organic Frameworkâ€Derived Nickel/Cobaltâ€Based Nanohybrids for Sensing Nonâ€Enzymatic Glucose. ChemElectroChem, 2020, 7, 4446-4452.	1.7	30
75	A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics. Chemical Engineering Journal, 2022, 427, 130886.	6.6	29
76	Enhanced immunofluorescence detection of a protein marker using a PAA modified ZnO nanorod array-based microfluidic device. Nanoscale, 2018, 10, 17663-17670.	2.8	28
77	Skeleton-Structure WS2@CNT Thin-Film Hybrid Electrodes for High-Performance Quasi-Solid-State Flexible Supercapacitors. Frontiers in Chemistry, 2020, 8, 442.	1.8	27
78	Calligraphy-inspired brush written foldable supercapacitors. Nano Energy, 2017, 38, 428-437.	8.2	26
79	A kirigami-inspired island-chain design for wearable moistureproof perovskite solar cells with high stretchability and performance stability. Nanoscale, 2020, 12, 3646-3656.	2.8	26
80	One-step synthesis of Co–Ni ferrite/graphene nanocomposites with controllable magnetic and electrical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1067-1072.	1.7	25
81	Functionalization of PNIPAAm microgels using magnetic graphene and their application in microreactors as switch materials. Journal of Materials Chemistry, 2011, 21, 10512.	6.7	24
82	Graphene-carbon nanotube papers for energy conversion and storage under sunlight and heat. Carbon, 2015, 95, 150-156.	5.4	24
83	In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells. Applied Surface Science, 2016, 380, 210-217.	3.1	24
84	Graphene directed architecture of fine engineered nanostructures with electrochemical applications. Electrochimica Acta, 2017, 242, 202-218.	2.6	24
85	Microfluidic spinning of editable polychromatic fibers. Journal of Colloid and Interface Science, 2020, 558, 115-122.	5.0	24
86	A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). Journal of Colloid and Interface Science, 2022, 616, 326-337.	5.0	24
87	Room-temperature synthesis of 3-dimentional Ag-graphene hybrid hydrogel with promising electrochemical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 769-774.	1.7	23
88	Antisolvent-Derived Intermediate Phases for Low-Temperature Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6477-6486.	2.5	23
89	Composite Solid Electrolytes: Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Higha€energy, Safe and Adaptable Lithium Batteries (Adv. Energy Mater. 31/2020). Advanced Energy Materials, 2020, 10, 2 <u>070131.</u>	10.2	23
90	Highly efficient flexible perovskite solar cells made via ultrasonic vibration assisted room temperature cold sintering. Chemical Engineering Journal, 2020, 394, 124887.	6.6	23

#	Article	IF	CITATIONS
91	Ultra-stretchable, self-adhesive, transparent, and ionic conductive organohydrogel for flexible sensor. APL Materials, 2021, 9, .	2.2	23
92	NiCo–NiCoO2/carbon hollow nanocages for non-enzyme glucose detection. Electrochimica Acta, 2021, 381, 138259.	2.6	22
93	Reagentâ€Free Synthesis and Plasmonic Antioxidation of Unique Nanostructured Metal–Metal Oxide Core–Shell Microfibers. Advanced Materials, 2016, 28, 4097-4104.	11.1	21
94	A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow. Nanoscale, 2017, 9, 17821-17828.	2.8	19
95	Reinforced heat dissipation by simple graphene coating for phosphor-in-glass applied in high-power LED. Journal of Alloys and Compounds, 2019, 774, 954-961.	2.8	19
96	One step synthesis of self-doped F–Ta2O5 nanoshuttles photocatalyst and enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 3996-4006.	3.8	19
97	Integrated Ionicâ€Additive Assisted Wetâ€Spinning of Highly Conductive and Stretchable PEDOT:PSS Fiber for Fibrous Organic Electrochemical Transistors. Advanced Electronic Materials, 2021, 7, 2100231.	2.6	19
98	A flexible metallic actuator using reduced graphene oxide as a multifunctional component. Nanoscale, 2017, 9, 12963-12968.	2.8	18
99	ZnS–CdS–TaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity. Journal of Sol-Gel Science and Technology, 2019, 91, 82-91.	1.1	18
100	High Volumetric Energy Density Asymmetric Fibrous Supercapacitors with Coaxial Structure Based on Graphene/MnO ₂ Hybrid Fibers. ChemElectroChem, 2020, 7, 4641-4648.	1.7	18
101	Ultralight, Flexible, and Semi-Transparent Metal Oxide Papers for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 3922-3930.	4.0	17
102	Stretchable electrothermochromic fibers based on hierarchical porous structures with electrically conductive dual-pathways. Science China Materials, 2020, 63, 2582-2589.	3.5	17
103	Mechanical design of brush coating technology for the alignment of one-dimension nanomaterials. Journal of Colloid and Interface Science, 2021, 583, 188-195.	5.0	15
104	Core-shell structured SiO2@ZrO2@SiO2 filler for radiopacity and ultra-low shrinkage dental composite resins. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104593.	1.5	15
105	Electrochemical Actuators with Multicolor Changes and Multidirectional Actuation. Small, 2022, 18, e2107778.	5.2	15
106	Rapid formation of superelastic 3D reduced graphene oxide networks with simultaneous removal of HI utilizing NIR irradiation. Journal of Materials Chemistry A, 2015, 3, 9882-9889.	5.2	14
107	Reagent-Free Electrophoretic Synthesis of Few-Atom-Thick Metal Oxide Nanosheets. Chemistry of Materials, 2017, 29, 1439-1446.	3.2	14
108	Highly Aligned Molybdenum Trioxide Nanobelts for Flexible Thin-Film Transistors and Supercapacitors: Macroscopic Assembly and Anisotropic Electrical Properties. ACS Applied Nano Materials, 2019, 2, 1466-1471.	2.4	14

#	Article	IF	CITATIONS
109	Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots. Journal of Materials Science, 2019, 54, 3242-3251.	1.7	14
110	Scalable fluid-spinning nanowire-based inorganic semiconductor yarns for electrochromic actuators. Materials Horizons, 2021, 8, 1711-1721.	6.4	14
111	Bistable dielectric elastomer actuator with directional motion. Sensors and Actuators A: Physical, 2021, 330, 112889.	2.0	14
112	Solvatochromic structural color fabrics with favorable wearability properties. Journal of Materials Chemistry C, 2019, 7, 4855-4862.	2.7	13
113	Independent dual-responsive Janus chromic fibers. Science China Materials, 2021, 64, 1770-1779.	3.5	13
114	Highly integrated fiber-shaped thermoelectric generators with radially heterogeneous interlayers. Nano Energy, 2022, 95, 107055.	8.2	13
115	Reduced graphene oxide-coated microfibers for oil–water separation. Environmental Science: Nano, 2019, 6, 3215-3224.	2.2	12
116	Light-driven artificial muscles based on electrospun microfiber yarns. Science China Technological Sciences, 2019, 62, 965-970.	2.0	12
117	Highly efficient walking perovskite solar cells based on thermomechanical polymer films. Journal of Materials Chemistry A, 2019, 7, 26154-26161.	5.2	12
118	Sizeâ€Dependent and Selfâ€Catalytic Gold@Prussian Blue Nanoparticles for the Electrochemical Detection of Hydrogen Peroxide. ChemElectroChem, 2020, 7, 3818-3823.	1.7	12
119	Ultra-stable ionic-liquid-based electrochromism enabled by metal-organic frameworks. Cell Reports Physical Science, 2022, 3, 100866.	2.8	12
120	Ultralong ZnO/Pt hierarchical structures for continuous-flow catalytic reactions. Materials and Design, 2016, 109, 492-502.	3.3	11
121	An ordered electrospun polycaprolactone–collagen–silk fibroin scaffold for hepatocyte culture. Journal of Materials Science, 2018, 53, 1623-1633.	1.7	11
122	High power factor n-type Ag ₂ Se/SWCNTs hybrid film for flexible thermoelectric generator. Journal Physics D: Applied Physics, 2021, 54, 434004.	1.3	11
123	Controlling the transformation of intermediate phase under near-room temperature for improving the performance of perovskite solar cells. Solar Energy, 2019, 186, 225-232.	2.9	10
124	A noise-reduced broad-spectrum photodetector based on reagent-free electrophoretic assembled flexible ZnO/rGO films. Applied Surface Science, 2019, 469, 113-117.	3.1	9
125	Environmentâ€sensitive carbon nanotube/polymer composite microhydrogels synthesized via a microfluidic reactor. Journal of Applied Polymer Science, 2013, 127, 2422-2426.	1.3	8
126	Capillary force driven printing of asymmetric Na-ion micro-supercapacitors. Journal of Materials Chemistry A, 2020, 8, 22083-22089.	5.2	8

#	Article	IF	CITATIONS
127	An electrically controllable all-solid-state Au@graphene oxide actuator. Chemical Communications, 2016, 52, 5816-5819.	2.2	7
128	Nanoporous hybrid CuO/ZnO/carbon papers used as ultrasensitive non-enzymatic electrochemical sensors. RSC Advances, 2019, 9, 41886-41892.	1.7	7
129	Controllable (Ga1â^'xZnx)(N1â^'xOx) nanorods grown on black silicon as anodes for water splitting. Applied Surface Science, 2020, 502, 144174.	3.1	7
130	Facile synthesis of 3D hierarchical micro-/nanostructures in capillaries for efficient capture of circulating tumor cells. Journal of Colloid and Interface Science, 2020, 575, 108-118.	5.0	7
131	Poly-ε-caprolactone nanofibrous mats as electrolyte host for tailorable flexible electrochromic devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 241, 36-41.	1.7	6
132	Carbon-based thin-film actuator with 1D to 2D transitional structure applied in smart clothing. Carbon, 2020, 168, 546-552.	5.4	5
133	Multi-functional Electrochromic Devices: Integration Strategies Based on Multiple and Single Devices. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 115.	0.6	5
134	Additionalâ€Heatingâ€Enhanced Largeâ€Scale Metallic Molybdenum Disulfide Nanosheet Exfoliation for Freeâ€Standing Films and Flexible Highâ€Performance Supercapacitors. ChemNanoMat, 2020, 6, 267-273.	1.5	4
135	Dielectrophoretic Assembly of Carbon Nanotube Chains in Aqueous Solution. Advanced Fiber Materials, 2021, 3, 312-320.	7.9	4
136	Continuous preparation of dual-responsive sensing fibers for smart textiles. Journal of Colloid and Interface Science, 2021, 597, 215-222.	5.0	4
137	Graphene-based implantable neural electrodes for insect flight control. Journal of Materials Chemistry B, 2022, 10, 4632-4639.	2.9	4
138	Research on Flexible GaInP/GaInAs/Ge/Bi2Te3/Sb2Te3 PV-TE Integrated Systems. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 781-786.	0.4	3
139	Oriented attachment growth of monocrystalline cuprous oxide nanowires in pure water. Nanoscale Advances, 2019, 1, 2174-2179.	2.2	3
140	Highly fluorinated polyimide gate dielectric for fully transparent aqueous precursor derived In–Zn oxide thin-film transistors. Journal of Materials Science, 2020, 55, 15919-15929.	1.7	3
141	Redox-Active Ni(II) Nodes Induced Electrochromism in a Two-Dimensional Conductive Metal–Organic Framework. ACS Applied Electronic Materials, 2022, 4, 2915-2922.	2.0	3
142	Polyacrylonitrile Fibers Anchored Cobalt/Graphene Sheet Nanocomposite: A Low-Cost, High-Performance and Reusable Catalyst for Hydrogen Generation. Journal of Nanoscience and Nanotechnology, 2016, 16, 5627-5632.	0.9	2
143	A self-healing, Na+ sensitive and neuron-compatible fiber. Chemical Engineering Journal, 2020, 386, 124018.	6.6	2
144	Thermal-assisted brush printing of water-based In-Ga-Zn oxide transistors. Journal of Alloys and Compounds, 2021, 862, 158001.	2.8	2

#	Article	IF	CITATIONS
145	Graphene-Paper Based Electrochemical Sensors. , 0, , .		1
146	Regulation of precursor solution concentration for In-Zn oxide thin film transistors. Current Applied Physics, 2018, 18, 1300-1305.	1.1	1