Antonio Pérez-GÃ;lvez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/916383/publications.pdf

Version: 2024-02-01

81 papers

2,946 citations

28
h-index

51 g-index

82 all docs 82 docs citations

82 times ranked 3618 citing authors

#	Article	IF	CITATIONS
1	An Integrative Approach of an In Vitro Measurement of the Digestibility of Triacylglycerols of Human Milk. Molecules, 2021, 26, 1935.	3.8	4
2	The color of greater flamingo feathers fades when no cosmetics are applied. Ecology and Evolution, 2021, 11, 13773-13779.	1.9	7
3	Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants, 2021, 10, 1622.	5.1	9
4	Accomplished High-Resolution Metabolomic and Molecular Studies Identify New Carotenoid Biosynthetic Reactions in Cyanobacteria. Journal of Agricultural and Food Chemistry, 2020, 68, 6212-6220.	5.2	7
5	Carotenoids and Chlorophylls as Antioxidants. Antioxidants, 2020, 9, 505.	5.1	205
6	Profile of Chlorophyll Catabolites in Senescent Leaves of <i>Epipremnun aureum</i> Includes a Catabolite Esterified with Hydroxytyrosol 1- <i>O</i> -Glucoside. Journal of Natural Products, 2020, 83, 873-880.	3.0	8
7	Development of an accurate and direct method for the green food colorants detection. Food Research International, 2020, 136, 109484.	6.2	10
8	Effect of gestational age (preterm or full term) on lipid composition of the milk fat globule and its membrane in human colostrum. Journal of Dairy Science, 2020, 103, 7742-7751.	3.4	14
9	HPLC-hrTOF-MS study of copper chlorophylls: Composition of food colorants and biochemistry after ingestion. Food Chemistry, 2020, 321, 126721.	8.2	8
10	Acquisition of Mass Spectrometry Data of Carotenoids: A Focus on Big Data Management. Methods in Molecular Biology, 2020, 2083, 135-144.	0.9	2
11	In Vitro Digestion for Control and Monitoring of Food Effects in Relation to Micellarization Index of Carotenoids. Methods in Molecular Biology, 2020, 2083, 375-386.	0.9	1
12	In Vitro Digestion of Human Milk: Influence of the Lactation Stage on the Micellar Carotenoids Content. Antioxidants, 2019, 8, 291.	5.1	12
13	Esterified carotenoids as new food components in cyanobacteria. Food Chemistry, 2019, 287, 295-302.	8.2	21
14	Chlorophyll Oxidative Metabolism During the Phototrophic and Heterotrophic Growth of Scenedesmus obliquus. Antioxidants, 2019, 8, 600.	5.1	32
15	Green Natural Colorants. Molecules, 2019, 24, 154.	3.8	92
16	Mass spectrometry: the indispensable tool for plant metabolomics of colourless chlorophyll catabolites. Phytochemistry Reviews, 2018, 17, 453-468.	6.5	12
17	In vitro bioaccessibility of lutein from cupcakes fortified with a water-soluble lutein esters formulation. Journal of Food Composition and Analysis, 2018, 68, 60-64.	3.9	21
18	Recent Developments in the Analysis of Carotenoids by Mass Spectrometry. , 2018, , .		3

#	Article	IF	CITATIONS
19	Carotenoid Content in Human Colostrum is Associated to Preterm/Full-Term Birth Condition. Nutrients, 2018, 10, 1654.	4.1	21
20	Bioaccessibility of Marine Carotenoids. Marine Drugs, 2018, 16, 397.	4.6	52
21	Mass Spectrometry of Non-allomerized Chlorophylls a and b Derivatives from Plants. Current Organic Chemistry, 2018, 22, 842-876.	1.6	14
22	MS tools for a systematic approach in survey for carotenoids and their common metabolites. Archives of Biochemistry and Biophysics, 2018, 650, 85-92.	3.0	12
23	Dynamic signalling using cosmetics may explain the reversed sexual dichromatism in the monogamous greater flamingo. Behavioral Ecology and Sociobiology, 2018, 72, 1.	1.4	7
24	Firstâ€Pass Metabolism of Chlorophylls in Mice. Molecular Nutrition and Food Research, 2018, 62, e1800562.	3.3	18
25	Activities, bioavailability, and metabolism of lipids from structural membranes and oils: Promising research on mild cognitive impairment. Pharmacological Research, 2018, 134, 299-304.	7.1	21
26	Chemistry in the Bioactivity of Chlorophylls: An Overview. Current Medicinal Chemistry, 2018, 24, 4515-4536.	2.4	41
27	Comprehensive chlorophyll composition in the main edible seaweeds. Food Chemistry, 2017, 228, 625-633.	8.2	57
28	Phyllobilins. Studies in Natural Products Chemistry, 2017, , 159-191.	1.8	9
29	Xanthophyll esters are found in human colostrum. Molecular Nutrition and Food Research, 2017, 61, 1700296.	3.3	29
30	Non-fluorescent and yellow chlorophyll catabolites in Japanese plum fruits (Prunus salicina, Lindl.). Food Research International, 2017, 100, 332-338.	6.2	15
31	Carotenoid: \hat{l}^2 -cyclodextrin stability is independent of pigment structure. Food Chemistry, 2017, 221, 1317-1321.	8.2	18
32	Carotenoids as a Source of Antioxidants in the Diet. Sub-Cellular Biochemistry, 2016, 79, 359-375.	2.4	63
33	Carotenoids exclusively synthesized in red pepper (capsanthin and capsorubin) protect human dermal fibroblasts against UVB induced DNA damage. Photochemical and Photobiological Sciences, 2016, 15, 1204-1211.	2.9	26
34	Tropical bat as mammalian model for skin carotenoid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10932-10937.	7.1	32
35	Chlorophylls., 2016,, 125-158.		24
36	Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-10.	1.6	23

#	Article	lF	Citations
37	Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives. Journal of Chromatography A, 2015, 1406, 99-108.	3.7	43
38	Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives. Journal of Chromatography A, 2015, 1412, 90-99.	3.7	48
39	A new probe for tracking the presence of E141i food colorant. Food Control, 2015, 51, 240-243.	5 . 5	15
40	Non-fluorescent chlorophyll catabolites in quince fruits. Food Research International, 2014, 65, 255-262.	6.2	31
41	Nonfluorescent Chlorophyll Catabolites in Loquat Fruits (<i>Eriobotrya japonica</i> Lindl.). Journal of Agricultural and Food Chemistry, 2014, 62, 10576-10584.	5.2	26
42	Fat content affects bioaccessibility and efficiency of enzymatic hydrolysis of lutein esters added to milk and yogurt. Food Research International, 2014, 65, 171-176.	6.2	40
43	Intramolecular Cyclisation as Structural Transformation of Carotenoids During Processing of Paprika (<i>Capsicum annuum</i> L.) and Paprika Oleoresins. ACS Symposium Series, 2013, , 207-217.	0.5	O
44	Effect of Simulated Thermoâ€Degradation on the Carotenoids, Tocopherols and Antioxidant Properties of Tomato and Paprika Oleoresins. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1697-1703.	1.9	12
45	Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Research International, 2012, 46, 438-450.	6.2	336
46	Greater flamingos Phoenicopterus roseus use uropygial secretions as make-up. Behavioral Ecology and Sociobiology, 2011, 65, 665-673.	1.4	50
47	Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil's claw root and garlic or salmon oil for antioxidant capacity. Journal of Pharmacy and Pharmacology, 2010, 55, 981-986.	2.4	55
48	In Vitro Intestinal Absorption of Carotenoids Delivered as Molecular Inclusion Complexes with \hat{l}^2 -Cyclodextrin Is Not Inhibited by High-Density Lipoproteins. Journal of Agricultural and Food Chemistry, 2010, 58, 3213-3221.	5.2	10
49	Physicochemical and microbiological characterization of the dehydration processing of red pepper fruits for paprika production. LWT - Food Science and Technology, 2010, 43, 1359-1367.	5.2	25
50	Stability of Paprika without Supplementary Antioxidants during Storage under Industrial Controlled Conditions. Journal of Agricultural and Food Chemistry, 2009, 57, 4718-4723.	5.2	18
51	In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 2009, 29, 751-760.	2.9	413
52	Description of volatile compounds generated by the degradation of carotenoids in paprika, tomato and marigold oleoresins. Food Chemistry, 2008, 106, 1145-1153.	8.2	63
53	Developing an Emulsifier System To Improve the Bioaccessibility of Carotenoids. Journal of Agricultural and Food Chemistry, 2008, 56, 10384-10390.	5.2	30
54	Color Quality in Red Pepper (Capsicum annuum, L.) and Derived Products. ACS Symposium Series, 2008, , 311-327.	0.5	2

#	Article	IF	CITATIONS
55	Astaxanthin from Crayfish (<i>Procambarus clarkii</i>) as a Pigmentary Ingredient in the Feed of Laying Hens. Grasas Y Aceites, 2008, 59, 139-145.	0.9	14
56	Changes in composition of the lipid matrix produce a differential incorporation of carotenoids in micelles. Interaction effect of cholesterol and oil. Innovative Food Science and Emerging Technologies, 2007, 8, 379-384.	5.6	31
57	Carotenylflavonoids, a novel group of potent, dual-functional antioxidants. Arkivoc, 2007, 2007, 279-295.	0.5	11
58	Carotenoid pigments in acerola fruits (Malpighia emarginata DC.) and derived products. European Food Research and Technology, 2005, 220, 63-69.	3.3	36
59	Dependence of carotenoid content and temperature-time regimes during the traditional slow drying of red pepper for paprika production at La Vera county. European Food Research and Technology, 2005, 221, 645-652.	3.3	18
60	Impact of the increased thermal processing on retinol equivalent values of paprika oleoresins. Journal of Food Engineering, 2005, 71, 379-385.	5.2	11
61	Thermal Degradation Products Formed from Carotenoids during a Heat-Induced Degradation Process of Paprika Oleoresins (CapsicumannuumL.). Journal of Agricultural and Food Chemistry, 2005, 53, 4820-4826.	5.2	16
62	Postprandial evolution of the carotenoid content in the triacylglycerol-rich lipoprotein fraction after a single ingestion of virgin olive oil in humans. Food Research International, 2005, 38, 1097-1102.	6.2	9
63	Esterification of xanthophylls and its effect on chemical behavior and bioavailability of carotenoids in the human. Nutrition Research, 2005, 25, 631-640.	2.9	74
64	Degradation, under Non-Oxygen-Mediated Autooxidation, of Carotenoid Profile Present in Paprika Oleoresins with Lipid Substrates of Different Fatty Acid Composition. Journal of Agricultural and Food Chemistry, 2004, 52, 632-637.	5.2	29
65	Changes in the Carotenoid Metabolism of Capsicum Fruits during Application of Modelized Slow Drying Process for Paprika Production. Journal of Agricultural and Food Chemistry, 2004, 52, 518-522.	5.2	24
66	Correlation between ASTA units-carotenoid concentration in paprika. Prediction of the color stability during storage. Grasas Y Aceites, 2004, 55, .	0.9	2
67	Incorporation of carotenoids from paprika oleoresin into human chylomicrons. British Journal of Nutrition, 2003, 89, 787-793.	2.3	92
68	Degradation of non-esterified and esterified xanthophylls by free radicals. Biochimica Et Biophysica Acta - General Subjects, 2002, 1569, 31-34.	2.4	55
69	Structureâ^Reactivity Relationship in the Oxidation of Carotenoid Pigments of the Pepper (Capsicum) Tj ETQq1 1	0.784314 5.2	1 rgBT /Overl
70	A rapid spectrophotometric method for the determination of peroxide value in food lipids with high carotenoid content. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 1151-1155.	1.9	85
71	Effect of high-oleic sunflower seed on the carotenoid stability of ground pepper. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 79-83.	1.9	13
72	Carotenoid Content of the VarietiesJarandaandJariza(CapsicumannuumL.) and Response during the Industrial Slow Drying and Grinding Steps in Paprika Processing. Journal of Agricultural and Food Chemistry, 2000, 48, 2972-2976.	5.2	48

#	Article	IF	Citations
73	Effect of High-Temperature Degradative Processes on Ketocarotenoids Present in Paprika Oleoresins. Journal of Agricultural and Food Chemistry, 2000, 48, 2966-2971.	5.2	23
74	Participation of pepper seed in the stability of paprika carotenoids. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1449-1454.	1.9	10
75	Fatty acid composition of two new pepper varieties (Capsicum annuumL. cv. Jaranda and Jariza). Effect of drying process and nutritional aspects. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 205-208.	1.9	46
76	Prediction of Decoloration in Paprika Oleoresins. Application to Studies of Stability in Thermodynamically Compensated Systems. Journal of Agricultural and Food Chemistry, 1999, 47, 945-951.	5.2	17
77	Color Quality in Paprika Oleoresins. Journal of Agricultural and Food Chemistry, 1998, 46, 5124-5127.	5.2	45
78	Termodegradacion de carotenoides en el pimentón. Grasas Y Aceites, 1997, 48, 290-296.	0.9	8
79	Processing of Red Pepper Fruits (Capsicum Annuum L.) for Production of Paprika and Paprika Oleoresin., 0,, 565-579.		6
80	Lipid-Soluble Vitamins: Nutritional and Functional Aspects., 0,, 39-53.		0
81	Paprika Production: Current Processing Techniques and Emerging Technologies. , 0, , 1031-1044.		0