
Antonio Pérez-GÃ;lvez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/916383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 2009, 29, 751-760.	2.9	413
2	Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Research International, 2012, 46, 438-450.	6.2	336
3	Carotenoids and Chlorophylls as Antioxidants. Antioxidants, 2020, 9, 505.	5.1	205
4	Incorporation of carotenoids from paprika oleoresin into human chylomicrons. British Journal of Nutrition, 2003, 89, 787-793.	2.3	92
5	Green Natural Colorants. Molecules, 2019, 24, 154.	3.8	92
6	A rapid spectrophotometric method for the determination of peroxide value in food lipids with high carotenoid content. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 1151-1155.	1.9	85
7	Esterification of xanthophylls and its effect on chemical behavior and bioavailability of carotenoids in the human. Nutrition Research, 2005, 25, 631-640.	2.9	74
8	Description of volatile compounds generated by the degradation of carotenoids in paprika, tomato and marigold oleoresins. Food Chemistry, 2008, 106, 1145-1153.	8.2	63
9	Carotenoids as a Source of Antioxidants in the Diet. Sub-Cellular Biochemistry, 2016, 79, 359-375.	2.4	63
10	Comprehensive chlorophyll composition in the main edible seaweeds. Food Chemistry, 2017, 228, 625-633.	8.2	57
11	Structureâ^'Reactivity Relationship in the Oxidation of Carotenoid Pigments of the Pepper (Capsicum) Tj ETQq1 1	0.784314 5.2	l rgBT /Over
12	Degradation of non-esterified and esterified xanthophylls by free radicals. Biochimica Et Biophysica Acta - General Subjects, 2002, 1569, 31-34.	2.4	55
13	Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil's claw root and garlic or salmon oil for antioxidant capacity. Journal of Pharmacy and Pharmacology, 2010, 55, 981-986.	2.4	55
14	Bioaccessibility of Marine Carotenoids. Marine Drugs, 2018, 16, 397.	4.6	52
15	Greater flamingos Phoenicopterus roseus use uropygial secretions as make-up. Behavioral Ecology and Sociobiology, 2011, 65, 665-673.	1.4	50
16	Carotenoid Content of the VarietiesJarandaandJariza(CapsicumannuumL.) and Response during the Industrial Slow Drying and Grinding Steps in Paprika Processing. Journal of Agricultural and Food Chemistry, 2000, 48, 2972-2976.	5.2	48
17	Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives. Journal of Chromatography A, 2015, 1412, 90-99.	3.7	48
18	Fatty acid composition of two new pepper varieties (Capsicum annuumL. cv. Jaranda and Jariza). Effect of drying process and nutritional aspects. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76. 205-208.	1.9	46

#	Article	IF	CITATIONS
19	Color Quality in Paprika Oleoresins. Journal of Agricultural and Food Chemistry, 1998, 46, 5124-5127.	5.2	45
20	Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives. Journal of Chromatography A, 2015, 1406, 99-108.	3.7	43
21	Chemistry in the Bioactivity of Chlorophylls: An Overview. Current Medicinal Chemistry, 2018, 24, 4515-4536.	2.4	41
22	Fat content affects bioaccessibility and efficiency of enzymatic hydrolysis of lutein esters added to milk and yogurt. Food Research International, 2014, 65, 171-176.	6.2	40
23	Carotenoid pigments in acerola fruits (Malpighia emarginata DC.) and derived products. European Food Research and Technology, 2005, 220, 63-69.	3.3	36
24	Tropical bat as mammalian model for skin carotenoid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10932-10937.	7.1	32
25	Chlorophyll Oxidative Metabolism During the Phototrophic and Heterotrophic Growth of Scenedesmus obliquus. Antioxidants, 2019, 8, 600.	5.1	32
26	Changes in composition of the lipid matrix produce a differential incorporation of carotenoids in micelles. Interaction effect of cholesterol and oil. Innovative Food Science and Emerging Technologies, 2007, 8, 379-384.	5.6	31
27	Non-fluorescent chlorophyll catabolites in quince fruits. Food Research International, 2014, 65, 255-262.	6.2	31
28	Developing an Emulsifier System To Improve the Bioaccessibility of Carotenoids. Journal of Agricultural and Food Chemistry, 2008, 56, 10384-10390.	5.2	30
29	Degradation, under Non-Oxygen-Mediated Autooxidation, of Carotenoid Profile Present in Paprika Oleoresins with Lipid Substrates of Different Fatty Acid Composition. Journal of Agricultural and Food Chemistry, 2004, 52, 632-637.	5.2	29
30	Xanthophyll esters are found in human colostrum. Molecular Nutrition and Food Research, 2017, 61, 1700296.	3.3	29
31	Nonfluorescent Chlorophyll Catabolites in Loquat Fruits (<i>Eriobotrya japonica</i> Lindl.). Journal of Agricultural and Food Chemistry, 2014, 62, 10576-10584.	5.2	26
32	Carotenoids exclusively synthesized in red pepper (capsanthin and capsorubin) protect human dermal fibroblasts against UVB induced DNA damage. Photochemical and Photobiological Sciences, 2016, 15, 1204-1211.	2.9	26
33	Physicochemical and microbiological characterization of the dehydration processing of red pepper fruits for paprika production. LWT - Food Science and Technology, 2010, 43, 1359-1367.	5.2	25
34	Changes in the Carotenoid Metabolism of Capsicum Fruits during Application of Modelized Slow Drying Process for Paprika Production. Journal of Agricultural and Food Chemistry, 2004, 52, 518-522.	5.2	24
35	Chlorophylls. , 2016, , 125-158.		24
36	Effect of High-Temperature Degradative Processes on Ketocarotenoids Present in Paprika Oleoresins. Journal of Agricultural and Food Chemistry, 2000, 48, 2966-2971.	5.2	23

#	Article	IF	CITATIONS
37	Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-10.	1.6	23
38	In vitro bioaccessibility of lutein from cupcakes fortified with a water-soluble lutein esters formulation. Journal of Food Composition and Analysis, 2018, 68, 60-64.	3.9	21
39	Carotenoid Content in Human Colostrum is Associated to Preterm/Full-Term Birth Condition. Nutrients, 2018, 10, 1654.	4.1	21
40	Activities, bioavailability, and metabolism of lipids from structural membranes and oils: Promising research on mild cognitive impairment. Pharmacological Research, 2018, 134, 299-304.	7.1	21
41	Esterified carotenoids as new food components in cyanobacteria. Food Chemistry, 2019, 287, 295-302.	8.2	21
42	Dependence of carotenoid content and temperature-time regimes during the traditional slow drying of red pepper for paprika production at La Vera county. European Food Research and Technology, 2005, 221, 645-652.	3.3	18
43	Stability of Paprika without Supplementary Antioxidants during Storage under Industrial Controlled Conditions. Journal of Agricultural and Food Chemistry, 2009, 57, 4718-4723.	5.2	18
44	Carotenoid:β-cyclodextrin stability is independent of pigment structure. Food Chemistry, 2017, 221, 1317-1321.	8.2	18
45	Firstâ€Pass Metabolism of Chlorophylls in Mice. Molecular Nutrition and Food Research, 2018, 62, e1800562.	3.3	18
46	Prediction of Decoloration in Paprika Oleoresins. Application to Studies of Stability in Thermodynamically Compensated Systems. Journal of Agricultural and Food Chemistry, 1999, 47, 945-951.	5.2	17
47	Thermal Degradation Products Formed from Carotenoids during a Heat-Induced Degradation Process of Paprika Oleoresins (CapsicumannuumL.). Journal of Agricultural and Food Chemistry, 2005, 53, 4820-4826.	5.2	16
48	A new probe for tracking the presence of E141i food colorant. Food Control, 2015, 51, 240-243.	5.5	15
49	Non-fluorescent and yellow chlorophyll catabolites in Japanese plum fruits (Prunus salicina, Lindl.). Food Research International, 2017, 100, 332-338.	6.2	15
50	Mass Spectrometry of Non-allomerized Chlorophylls a and b Derivatives from Plants. Current Organic Chemistry, 2018, 22, 842-876.	1.6	14
51	Effect of gestational age (preterm or full term) on lipid composition of the milk fat globule and its membrane in human colostrum. Journal of Dairy Science, 2020, 103, 7742-7751.	3.4	14
52	Astaxanthin from Crayfish (<i>Procambarus clarkii</i>) as a Pigmentary Ingredient in the Feed of Laying Hens. Grasas Y Aceites, 2008, 59, 139-145.	0.9	14
53	Effect of high-oleic sunflower seed on the carotenoid stability of ground pepper. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 79-83.	1.9	13
54	Effect of Simulated Thermoâ€Degradation on the Carotenoids, Tocopherols and Antioxidant Properties of Tomato and Paprika Oleoresins. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1697-1703.	1.9	12

ANTONIO PéREZ-GÃilvez

#	Article	IF	CITATIONS
55	Mass spectrometry: the indispensable tool for plant metabolomics of colourless chlorophyll catabolites. Phytochemistry Reviews, 2018, 17, 453-468.	6.5	12
56	MS tools for a systematic approach in survey for carotenoids and their common metabolites. Archives of Biochemistry and Biophysics, 2018, 650, 85-92.	3.0	12
57	In Vitro Digestion of Human Milk: Influence of the Lactation Stage on the Micellar Carotenoids Content. Antioxidants, 2019, 8, 291.	5.1	12
58	Impact of the increased thermal processing on retinol equivalent values of paprika oleoresins. Journal of Food Engineering, 2005, 71, 379-385.	5.2	11
59	Carotenylflavonoids, a novel group of potent, dual-functional antioxidants. Arkivoc, 2007, 2007, 279-295.	0.5	11
60	Participation of pepper seed in the stability of paprika carotenoids. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1449-1454.	1.9	10
61	In Vitro Intestinal Absorption of Carotenoids Delivered as Molecular Inclusion Complexes with β-Cyclodextrin Is Not Inhibited by High-Density Lipoproteins. Journal of Agricultural and Food Chemistry, 2010, 58, 3213-3221.	5.2	10
62	Development of an accurate and direct method for the green food colorants detection. Food Research International, 2020, 136, 109484.	6.2	10
63	Postprandial evolution of the carotenoid content in the triacylglycerol-rich lipoprotein fraction after a single ingestion of virgin olive oil in humans. Food Research International, 2005, 38, 1097-1102.	6.2	9
64	Phyllobilins. Studies in Natural Products Chemistry, 2017, , 159-191.	1.8	9
65	Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants, 2021, 10, 1622.	5.1	9
66	Profile of Chlorophyll Catabolites in Senescent Leaves of <i>Epipremnun aureum</i> Includes a Catabolite Esterified with Hydroxytyrosol 1- <i>O</i> -Glucoside. Journal of Natural Products, 2020, 83, 873-880.	3.0	8
67	HPLC-hrTOF-MS study of copper chlorophylls: Composition of food colorants and biochemistry after ingestion. Food Chemistry, 2020, 321, 126721.	8.2	8
68	Termodegradacion de carotenoides en el pimentón. Grasas Y Aceites, 1997, 48, 290-296.	0.9	8
69	Dynamic signalling using cosmetics may explain the reversed sexual dichromatism in the monogamous greater flamingo. Behavioral Ecology and Sociobiology, 2018, 72, 1.	1.4	7
70	Accomplished High-Resolution Metabolomic and Molecular Studies Identify New Carotenoid Biosynthetic Reactions in Cyanobacteria. Journal of Agricultural and Food Chemistry, 2020, 68, 6212-6220.	5.2	7
71	The color of greater flamingo feathers fades when no cosmetics are applied. Ecology and Evolution, 2021, 11, 13773-13779.	1.9	7
72	Processing of Red Pepper Fruits (Capsicum Annuum L.) for Production of Paprika and Paprika Oleoresin 0 565-579.		6

Oleoresin., 0, , 565-579.

Antonio Pérez-GÃilvez

#	Article	IF	CITATIONS
73	An Integrative Approach of an In Vitro Measurement of the Digestibility of Triacylglycerols of Human Milk. Molecules, 2021, 26, 1935.	3.8	4
74	Recent Developments in the Analysis of Carotenoids by Mass Spectrometry. , 2018, , .		3
75	Color Quality in Red Pepper (Capsicum annuum, L.) and Derived Products. ACS Symposium Series, 2008, , 311-327.	0.5	2
76	Acquisition of Mass Spectrometry Data of Carotenoids: A Focus on Big Data Management. Methods in Molecular Biology, 2020, 2083, 135-144.	0.9	2
77	Correlation between ASTA units-carotenoid concentration in paprika. Prediction of the color stability during storage. Grasas Y Aceites, 2004, 55, .	0.9	2
78	In Vitro Digestion for Control and Monitoring of Food Effects in Relation to Micellarization Index of Carotenoids. Methods in Molecular Biology, 2020, 2083, 375-386.	0.9	1
79	Lipid-Soluble Vitamins: Nutritional and Functional Aspects. , 0, , 39-53.		0
80	Paprika Production: Current Processing Techniques and Emerging Technologies. , 0, , 1031-1044.		0
81	Intramolecular Cyclisation as Structural Transformation of Carotenoids During Processing of Paprika (<i>Capsicum annuum</i> L.) and Paprika Oleoresins. ACS Symposium Series, 2013, , 207-217.	0.5	Ο