
Vinicius Nahime Brito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9163820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights from the genetic characterization of central precocious puberty associated with multiple anomalies. Human Reproduction, 2021, 36, 506-518.	0.9	16
2	Anthropometric, metabolic, and reproductive outcomes of patients with central precocious puberty treated with leuprorelin acetate 3-month depot (11.25Âmg). Journal of Pediatric Endocrinology and Metabolism, 2021, 34, 1371-1377.	0.9	2
3	Genotype–Phenotype Correlations in Central Precocious Puberty Caused by <i>MKRN3</i> Mutations. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1041-e1050.	3.6	31
4	Outcomes of Patients with Central Precocious Puberty Due to Loss-of-Function Mutations in the MKRN3 Gene after Treatment with Gonadotropin-Releasing Hormone Analog. Neuroendocrinology, 2020, 110, 705-713.	2.5	17
5	Novel Genetic and Biochemical Findings of DLK1 in Children with Central Precocious Puberty: A Brazilian–Spanish Study. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3165-3172.	3.6	29
6	SUN-061 Anthropometric and Reproductive Outcomes of Patients with Gonadotropin-Independent Precocious Puberty Due to McCune-Albright Syndrome After Treatment with Distinct Therapeutic Agents. Journal of the Endocrine Society, 2020, 4, .	0.2	0
7	Genetic investigation of patients with tall stature. European Journal of Endocrinology, 2020, 182, 139-147.	3.7	3
8	SUN-085 Clinical and Hormonal Features of 37 Families with Central Precocious Puberty Due to MKRN3 Loss-Of -Function Mutations. Journal of the Endocrine Society, 2020, 4, .	0.2	0
9	SUN-725 Clinical and Genetic Features of Families with Maternally Inherited Central Precocious Puberty. Journal of the Endocrine Society, 2020, 4, .	0.2	Ο
10	SUN-081 High Throughput Genetic Analysis Revealed Novel Genomic Loci and Candidate Genes Involved in Central Precocious Puberty Associated with Complex Phenotypes. Journal of the Endocrine Society, 2020, 4, .	0.2	0
11	Pioneering studies on monogenic central precocious puberty. Archives of Endocrinology and Metabolism, 2019, 63, 438-444.	0.6	35
12	Premature Pubarche due to Exogenous Testosterone Gel or Intense Diaper Rash Prevention Cream Use: A Case Series. Hormone Research in Paediatrics, 2019, 91, 411-415.	1.8	10
13	DLK1 Is a Novel Link Between Reproduction and Metabolism. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2112-2120.	3.6	75
14	Methylome profiling of healthy and central precocious puberty girls. Clinical Epigenetics, 2018, 10, 146.	4.1	34
15	Central Precocious Puberty Caused by a Heterozygous Deletion in the MKRN3 Promoter Region. Neuroendocrinology, 2018, 107, 127-132.	2.5	23
16	High Frequency of <i>MKRN3</i> Mutations in Male Central Precocious Puberty Previously Classified as Idiopathic. Neuroendocrinology, 2017, 105, 17-25.	2.5	65
17	Paternally Inherited DLK1 Deletion Associated With Familial Central Precocious Puberty. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1557-1567.	3.6	145
18	Underdiagnosis of central precocious puberty in boys with loss-of-function mutations of MKRN3. Journal of Pediatrics, 2017, 183, 202-203.	1.8	2

#	Article	IF	CITATIONS
19	Neonatal 17â€hydroxyprogesterone levels adjusted according to age at sample collection and birthweight improve the efficacy of congenital adrenal hyperplasia newborn screening. Clinical Endocrinology, 2017, 86, 480-487.	2.4	34
20	Successful Pregnancies After Adequate Hormonal Replacement in Patients With Combined Pituitary Hormone Deficiencies. Journal of the Endocrine Society, 2017, 1, 1322-1330.	0.2	14
21	Central precocious puberty: revisiting the diagnosis and therapeutic management. Archives of Endocrinology and Metabolism, 2016, 60, 163-172.	0.6	76
22	A Single Nucleotide Variant in the Promoter Region of 17β-HSD Type 5 Gene Influences External Genitalia Virilization in Females with 21-Hydroxylase Deficiency. Hormone Research in Paediatrics, 2016, 85, 333-338.	1.8	5
23	Causes, diagnosis, and treatment of central precocious puberty. Lancet Diabetes and Endocrinology,the, 2016, 4, 265-274.	11.4	329
24	Clinical, hormonal, ovarian, and genetic aspects of 46,XX patients with congenital adrenal hyperplasia due to CYP17A1 defects. Fertility and Sterility, 2016, 105, 1612-1619.	1.0	27
25	Mutation analysis of NANOS3 in Brazilian women with primary ovarian failure. Clinics, 2016, 71, 695-698.	1.5	6
26	Quality of life of patients with 46, <scp>XX</scp> and 46, <scp>XY</scp> disorders of sex development. Clinical Endocrinology, 2015, 82, 159-164.	2.4	28
27	A new pathway in the control of the initiation of puberty: the MKRN3 gene. Journal of Molecular Endocrinology, 2015, 54, R131-R139.	2.5	101
28	Validation of an immunoassay for anti-Müllerian hormone measurements and reference intervals in healthy Brazilian subjects. Annals of Clinical Biochemistry, 2015, 52, 67-75.	1.6	8
29	FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocrine Connections, 2015, 4, 100-107.	1.9	34
30	Quality of life in a large cohort of adult Brazilian patients with 46,XX and 46,XY disorders of sex development from a single tertiary centre. Clinical Endocrinology, 2015, 82, 274-279.	2.4	22
31	Puberty: When is it normal?. Archives of Endocrinology and Metabolism, 2015, 59, 93-94.	0.6	7
32	New Causes of Central Precocious Puberty: The Role of Genetic Factors. Neuroendocrinology, 2014, 100, 1-8.	2.5	72
33	Adrenocorticotropic Hormone but not High-Density Lipoprotein Cholesterol or Salivary Cortisol was a Predictor of Adrenal Insufficiency in Patients with Septic Shock. Shock, 2014, 42, 16-21.	2.1	5
34	Central Precocious Puberty That Appears to Be Sporadic Caused by Paternally Inherited Mutations in the Imprinted Gene Makorin Ring Finger 3. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1097-E1103.	3.6	126
35	Molecular and Gene Network Analysis of Thyroid Transcription Factor 1 <i>(TTF1)</i> and Enhanced at Puberty <i>(EAP1)</i> Genes in Patients with GnRH-Dependent Pubertal Disorders. Hormone Research in Paediatrics, 2013, 80, 257-266.	1.8	18
36	The benign spectrum of hypothalamic hamartomas: Infrequent epilepsy and normal cognition in patients presenting with central precocious puberty. Seizure: the Journal of the British Epilepsy Association, 2013, 22, 28-32.	2.0	20

#	Article	IF	CITATIONS
37	Central Precocious Puberty Caused by Mutations in the Imprinted Gene <i>MKRN3</i> . New England Journal of Medicine, 2013, 368, 2467-2475.	27.0	450
38	Polycystic ovary syndrome and obesity do not affect vascular parameters related to early atherosclerosis in young women without glucose metabolism disturbances, arterial hypertension and severe abnormalities of lipid profile. Gynecological Endocrinology, 2013, 29, 370-374.	1.7	16
39	Absence of Functional <i>LIN28B</i> Mutations in a Large Cohort of Patients with Idiopathic Central Precocious Puberty. Hormone Research in Paediatrics, 2012, 78, 144-150.	1.8	35
40	Absence of inactivating mutations and deletions in the DMRT1 and FGF9 genes in a large cohort of 46,XY patients with gonadal dysgenesis. European Journal of Medical Genetics, 2012, 55, 690-694.	1.3	9
41	Mutational analysis of TAC3 and TACR3 genes in patients with idiopathic central pubertal disorders. Arquivos Brasileiros De Endocrinologia E Metabologia, 2012, 56, 646-652.	1.3	46
42	Weight-adjusted neonatal 17OH-progesterone cutoff levels improve the efficiency of newborn screening for congenital adrenal hyperplasia. Arquivos Brasileiros De Endocrinologia E Metabologia, 2011, 55, 632-637.	1.3	24
43	46,XY DSD due to 17β-HSD3 Deficiency and 5α-Reductase Type 2 Deficiency. Advances in Experimental Medicine and Biology, 2011, 707, 9-14.	1.6	10
44	Male hypogonadism: childhood diagnosis and future therapies. Pediatric Health, 2010, 4, 539-555.	0.3	2
45	Could the Leukocyte X Chromosome Inactivation Pattern Be Extrapolated to Hair Bulbs?. Hormone Research in Paediatrics, 2010, 73, 238-243.	1.8	4
46	Long-Term Surgical Outcome of Masculinizing Genitoplasty in Large Cohort of Patients With Disorders of Sex Development. Journal of Urology, 2010, 184, 1122-1127.	0.4	46
47	SHORT AND LONG-TERM SURGICAL OUTCOME OF MASCULINIZING GENITOPLASTY IN A LARGE COHORT OF PATIENTS WITH DISORDERS OF SEX DEVELOPMENT (DSD). Journal of Urology, 2009, 181, 400-400.	0.4	0
48	Longâ€ŧerm treatment of familial maleâ€ŀimited precocious puberty (testotoxicosis) with cyproterone acetate or ketoconazole. Clinical Endocrinology, 2008, 69, 93-98.	2.4	42
49	A <i>GPR54</i> -Activating Mutation in a Patient with Central Precocious Puberty. New England Journal of Medicine, 2008, 358, 709-715.	27.0	507
50	Effects of long-term storage of filter paper blood samples on neonatal thyroid stimulating hormone, thyroxin and 17-alpha-hydroxyprogesterone measurements. Journal of Medical Screening, 2008, 15, 109-111.	2.3	18
51	Factors Determining Normal Adult Height in Girls with Gonadotropin-Dependent Precocious Puberty Treated with Depot Gonadotropin-Releasing Hormone Analogs. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2662-2669.	3.6	54
52	Update on the etiology, diagnosis and therapeutic management of sexual precocity. Arquivos Brasileiros De Endocrinologia E Metabologia, 2008, 52, 18-31.	1.3	75
53	Molecular analysis of the neuropeptide Y1 receptor gene in human idiopathic gonadotropin-dependent precocious puberty and isolated hypogonadotropic hypogonadism. Fertility and Sterility, 2007, 87, 627-634.	1.0	19
54	A single somatic activating Asp578His mutation of the luteinizing hormone receptor causes Leydig cell tumour in boys with gonadotropinâ€independent precocious puberty. Clinical Endocrinology, 2006, 65, 408-410.	2.4	20

#	Article	IF	CITATIONS
55	Allelic Variants of the Î ³ -Aminobutyric Acid-A Receptor α1-Subunit Gene (GABRA1) Are Not Associated with Idiopathic Gonadotropin-Dependent Precocious Puberty in Girls with and without Electroencephalographic Abnormalities. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2432-2436.	3.6	17
56	Clinical and hormonal features of selective follicle-stimulating hormone (FSH) deficiency due to FSH beta-subunit gene mutations in both sexes. Fertility and Sterility, 2005, 83, 466-470.	1.0	51
57	A Single Luteinizing Hormone Determination 2 Hours after Depot Leuprolide Is Useful for Therapy Monitoring of Gonadotropin-Dependent Precocious Puberty in Girls. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4338-4342.	3.6	84
58	Adrenocorticotropin-Dependent Precocious Puberty of Testicular Origin in a Boy with X-Linked Adrenal Hypoplasia Congenita Due to a Novel Mutation in the DAX1 Gene. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4068-4071.	3.6	15
59	The effect of distinct activating mutations of the luteinizing hormone receptor gene on the pituitary-gonadal axis in both sexes. Clinical Endocrinology, 2000, 53, 609-613.	2.4	33