Teresa Escalante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9163600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon, 2005, 45, 997-1011.	1.6	368
2	Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. Journal of Proteomics, 2011, 74, 1781-1794.	2.4	187
3	Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon, 2009, 54, 958-975.	1.6	160
4	Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins, 2016, 8, 93.	3.4	139
5	Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon, 2009, 54, 976-987.	1.6	124
6	Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake <i>Bothrops asper</i> . Mediators of Inflammation, 2002, 11, 121-128.	3.0	102
7	Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Biochemical Pharmacology, 2000, 60, 269-274.	4.4	98
8	Novel insights into capillary vessel basement membrane damage by snake venom hemorrhagic metalloproteinases: A biochemical and immunohistochemical study. Archives of Biochemistry and Biophysics, 2006, 455, 144-153.	3.0	96
9	Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage. PLoS Neglected Tropical Diseases, 2015, 9, e0003731.	3.0	79
10	A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins, 2016, 8, 304.	3.4	76
11	Wound Exudate as a Proteomic Window to Reveal Different Mechanisms of Tissue Damage by Snake Venom Toxins. Journal of Proteome Research, 2009, 8, 5120-5131.	3.7	72
12	Effect of the metalloproteinase inhibitor batimastat in the systemic toxicity induced by Bothrops asper snake venom: understanding the role of metalloproteinases in envenomation. Toxicon, 2004, 43, 417-424.	1.6	71
13	Role of Collagens and Perlecan in Microvascular Stability: Exploring the Mechanism of Capillary Vessel Damage by Snake Venom Metalloproteinases. PLoS ONE, 2011, 6, e28017.	2.5	71
14	Thrombocytopenia and platelet hypoaggregation induced by Bothrops asper snake venom. Thrombosis and Haemostasis, 2005, 94, 123-131.	3.4	65
15	Skin Pathology Induced by Snake Venom Metalloproteinase: Acute Damage, Revascularization, and Re-epithelization in a Mouse Ear Model. Journal of Investigative Dermatology, 2008, 128, 2421-2428.	0.7	65
16	Pulmonary hemorrhage induced by jararhagin, a metalloproteinase from Bothrops jararaca snake venom. Toxicology and Applied Pharmacology, 2003, 193, 17-28.	2.8	60
17	Characterization of Aspercetin, a Platelet Aggregating Component from the Venom of the Snake Bothrops asper which Induces Thrombocytopenia and Potentiates Metalloproteinase-induced Hemorrhage. Thrombosis and Haemostasis, 2001, 85, 710-715.	3.4	59
18	Role of the snake venom toxin jararhagin in proinflammatory pathogenesis: In vitro and in vivo gene expression analysis of the effects of the toxin. Archives of Biochemistry and Biophysics, 2005, 441, 1-15	3.0	57

TERESA ESCALANTE

#	Article	IF	CITATIONS
19	Viperid Envenomation Wound Exudate Contributes to Increased Vascular Permeability via a DAMPs/TLR-4 Mediated Pathway. Toxins, 2016, 8, 349.	3.4	48
20	Proteomic analysis of Bothrops pirajai snake venom and characterization of BpirMP, a new P-I metalloproteinase. Journal of Proteomics, 2013, 80, 250-267.	2.4	43
21	High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry. Journal of Proteomics, 2011, 74, 401-410.	2.4	42
22	Unresolved issues in the understanding of the pathogenesis of local tissue damage induced by snake venoms. Toxicon, 2018, 148, 123-131.	1.6	40
23	Why is Skeletal Muscle Regeneration Impaired after Myonecrosis Induced by Viperid Snake Venoms?. Toxins, 2018, 10, 182.	3.4	40
24	Tissue pathology induced by snake venoms: How to understand a complex pattern of alterations from a systems biology perspective?. Toxicon, 2010, 55, 166-170.	1.6	39
25	The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins, 2021, 13, 451.	3.4	38
26	Proteomics of Wound Exudate in Snake Venom-Induced Pathology: Search for Biomarkers To Assess Tissue Damage and Therapeutic Success. Journal of Proteome Research, 2011, 10, 1987-2005.	3.7	36
27	Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis. PLoS Neglected Tropical Diseases, 2016, 10, e0004599.	3.0	35
28	Bothrops asper metalloproteinase BaP1 is inhibited by α2-macroglobulin and mouse serum and does not induce systemic hemorrhage or coagulopathy. Toxicon, 2004, 43, 213-217.	1.6	34
29	Blood flow is required for rapid endothelial cell damage induced by a snake venom hemorrhagic metalloproteinase. Microvascular Research, 2006, 71, 55-63.	2.5	34
30	The venom of Bothrops asper from Guatemala: toxic activities and neutralization by antivenoms. Toxicon, 2001, 39, 401-405.	1.6	33
31	The lethality test used for estimating the potency of antivenoms against Bothrops asper snake venom: Pathophysiological mechanisms, prophylactic analgesia, and a surrogate inÂvitro assay. Toxicon, 2015, 93, 41-50.	1.6	26
32	Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3. PLoS ONE, 2019, 14, e0213394.	2.5	24
33	Understanding structural and functional aspects of PII snake venom metalloproteinases: Characterization of BlatH1, a hemorrhagic dimeric enzyme from the venom of Bothriechis lateralis. Biochimie, 2014, 101, 145-155.	2.6	21
34	Efficacy of IgG and F(ab′) ₂ Antivenoms to Neutralize Snake Venom-induced Local Tissue Damage as Assessed by the Proteomic Analysis of Wound Exudate. Journal of Proteome Research, 2012, 11, 292-305.	3.7	20
35	Effects of PI and PIII Snake Venom Haemorrhagic Metalloproteinases on the Microvasculature: A Confocal Microscopy Study on the Mouse Cremaster Muscle. PLoS ONE, 2016, 11, e0168643.	2.5	15
36	Systemic vascular leakage induced in mice by Russell's viper venom from Pakistan. Scientific Reports, 2018, 8, 16088.	3.3	14

TERESA ESCALANTE

#	Article	IF	CITATIONS
37	Proteomic Analysis of Human Blister Fluids Following Envenomation by Three Snake Species in India: Differential Markers for Venom Mechanisms of Action. Toxins, 2019, 11, 246.	3.4	14
38	Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics. Expert Review of Proteomics, 2018, 15, 967-982.	3.0	13
39	Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins, 2019, 11, 170.	3.4	11
40	Homogenates of skeletal muscle injected with snake venom inhibit myogenic differentiation in cell culture. Muscle and Nerve, 2013, 47, 202-212.	2.2	10
41	Analysis of wound exudates reveals differences in the patterns of tissue damage and inflammation induced by the venoms of Daboia russelii and Bothrops asper in mice. Toxicon, 2020, 186, 94-104.	1.6	10
42	Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif. Toxins, 2016, 8, 292.	3.4	8
43	Site mutation of residues in a loop surrounding the active site of a P I snake venom metalloproteinase abrogates its hemorrhagic activity. Biochemical and Biophysical Research Communications, 2019, 512, 859-863.	2.1	7
44	Snake Venom Metalloproteinases. , 2009, , 115-138.		7
45	A Biomimetic of Endogenous Tissue Inhibitors of Metalloproteinases: Inhibition Mechanism and Contribution of Composition, Polymer Size, and Shape to the Inhibitory Effect. Nano Letters, 2021, 21, 5663-5670.	9.1	6
46	Discovery of small molecule inhibitors for the snake venom metalloprotease BaP1 using in silico and in vitro tests. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2018-2022.	2.2	5
47	Changes in basement membrane components in an experimental model of skeletal muscle degeneration and regeneration induced by snake venom and myotoxic phospholipase A2. Toxicon, 2021, 192, 46-56.	1.6	5
48	<i>In silico-designed</i> mutations increase variable new-antigen receptor single-domain antibodies for VEGF165 neutralization. Oncotarget, 2018, 9, 28016-28029.	1.8	4
49	Basement membrane degradation and inflammation play a role in the pulmonary hemorrhage induced by a P-III snake venom metalloproteinase. Toxicon, 2021, 197, 12-23.	1.6	3
50	Hemorrhagic and procoagulant P-III snake venom metalloproteinases differ in their binding to the microvasculature of mouse cremaster muscle. Toxicon, 2020, 178, 1-3.	1.6	2
51	Coagulopathy induced by viperid snake venoms in a murine model: Comparison of standard coagulation tests and rotational thromboelastometry. Toxicon, 2022, 214, 121-129.	1.6	2

52 Bothrops asper Metalloproteinase BaP1. , 2013, , 984-987.