Martin Thunemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9163071/publications.pdf Version: 2024-02-01

MADTIN THUNFMANN

#	Article	IF	CITATIONS
1	Apolipoprotein E derived from CD11c+ cells ameliorates atherosclerosis. IScience, 2022, 25, 103677.	1.9	5
2	Scalable Thousand Channel Penetrating Microneedle Arrays on Flex for Multimodal and Large Area Coverage BrainMachine Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	19
3	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	1.7	17
4	Two-photon microscopic measurements of the effect of bilateral carotid artery stenosis on the cerebral and retinal microcirculation. , 2021, , .		0
5	Chronic 2-photon imaging through a wearable PEDOT:PSS neurointerface. , 2021, , .		Ο
6	Transparent neural interface for in vivo interrogation of human organoids. , 2021, , .		0
7	Two-photon microscopic imaging of the circadian rhythm induced changes in the cerebral microvascular blood flow. , 2021, , .		Ο
8	All-Optical Electrophysiology in hiPSC-Derived Neurons With Synthetic Voltage Sensors. Frontiers in Cellular Neuroscience, 2021, 15, 671549.	1.8	3
9	A suite of neurophotonic tools to underpin the contribution of internal brain states in fMRI. Current Opinion in Biomedical Engineering, 2021, 18, 100273.	1.8	6
10	BOLD fMRI in Mice with Large-Scale Optical Cranial Windows. , 2021, , .		0
11	Multimodal Monitoring of Human Brain Organoids Implanted in Mice Using Transparent Microelectrodes. , 2021, , .		О
12	Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 501-512.	2.4	38
13	Impact of Brain Surface Boundary Conditions on Electrophysiology and Implications for Electrocorticography. Frontiers in Neuroscience, 2020, 14, 763.	1.4	3
14	Advantages of Non-degenerate Two-photon Microscopy for Deep Tissue Imaging. Biophysical Journal, 2020, 118, 311a.	0.2	0
15	Chronic Cranial Windows for Long Term Multimodal Neurovascular Imaging in Mice. Frontiers in Physiology, 2020, 11, 612678.	1.3	25
16	Chronic 2-photon calcium imaging through transparent PEDOT:PSS microelectrode arrays in awake mice. , 2020, , .		1
17	A flexible head fixation system for optical imaging and electrophysiology in awake mice. , 2020, , .		3
18	Increased penetration depth by non-degenerate two-photon microscopy. , 2020, , .		0

Martin Thunemann

#	Article	IF	CITATIONS
19	Estimation of Cortical Oxygen Metabolism in Awake Mice using Two-photon Imaging of Oxyphor 2P. , 2020, , .		1
20	Overcoming the Fundamental Limit of Two-Photon Microscopy With Non-Degenerate Excitation. , 2020, , .		0
21	All-Optical Electrophysiology in iPSC-Derived Neurons with Synthetic NIR Voltage Reporter. , 2020, , .		Ο
22	Selective Formation of Porous Pt Nanorods for Highly Electrochemically Efficient Neural Electrode Interfaces. Nano Letters, 2019, 19, 6244-6254.	4.5	51
23	Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components. PLoS Computational Biology, 2019, 15, e1006769.	1.5	32
24	Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level–Dependent Functional Magnetic Resonance Imaging. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 533-542.	1.1	49
25	Phosphorescent Pt(<scp>ii</scp>) complexes spatially arrayed in micellar polymeric nanoparticles providing dual readout for multimodal imaging. Chemical Communications, 2019, 55, 501-504.	2.2	18
26	Efficient non-degenerate two-photon excitation for fluorescence microscopy. Optics Express, 2019, 27, 28022.	1.7	16
27	Measurement of the relative non-degenerate two-photon absorption cross-section for fluorescence microscopy. Optics Express, 2019, 27, 8335.	1.7	10
28	Predictability of non-degenerate two-photon absorption spectra (Conference Presentation). , 2019, , .		0
29	<i>In Vivo</i> Two-Photon Voltage Imaging with Sulfonated Rhodamine Dyes. ACS Central Science, 2018, 4, 1371-1378.	5.3	41
30	Monolithic and Scalable Au Nanorod Substrates Improve PEDOT–Metal Adhesion and Stability in Neural Electrodes. Advanced Healthcare Materials, 2018, 7, e1800923.	3.9	35
31	A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nature Communications, 2018, 9, 4301.	5.8	32
32	Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays. Nature Communications, 2018, 9, 2035.	5.8	143
33	Neurovascular Network Explorer 2.0: A Simple Tool for Exploring and Sharing a Database of Optogenetically-evoked Vasomotion in Mouse Cortex In Vivo. Journal of Visualized Experiments, 2018, ,	0.2	0
34	In Vivo Brain Imaging with Non-Degenerate 2-Photon Microscopy. , 2018, , .		0
35	Does Light Propagate Better Along Pyramidal Apical Dendrites in Cerebral Cortex?. , 2018, , .		1
36	Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging. Nature Neuroscience, 2017, 20, 1371-1376.	7.1	277

MARTIN THUNEMANN

#	Article	IF	CITATIONS
37	Cre/lox-assisted non-invasive in vivo tracking of specific cell populations by positron emission tomography. Nature Communications, 2017, 8, 444.	5.8	33
38	Neurovascular Network Explorer 2.0: A Database of 2-Photon Single-Vessel Diameter Measurements from Mouse SI Cortex in Response To Optogenetic Stimulation. Frontiers in Neuroinformatics, 2017, 11, 4.	1.3	4
39	Implementation of Deep 2-Photon Microscopy and Optogenetics to Dissect Cell-Type-Specific Mechanisms of Cerebrovascular Regulation. , 2017, , .		0
40	Cell type specificity of neurovascular coupling in cerebral cortex. ELife, 2016, 5, .	2.8	176
41	The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150356.	1.8	41
42	Sildenafil Potentiates a cGMP-Dependent Pathway to Promote Melanoma Growth. Cell Reports, 2016, 14, 2599-2610.	2.9	58
43	A CNP-cGMP-cGKI-MAPK pathway promotes melanoma growth in vitro and in vivo in mice. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	Ο
44	Correlation of vascular smooth muscle cell phenotype and cGMP signalling. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	0
45	Comparative analysis of established and new biosensors for cyclic nucleotides. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	Ο
46	Real-time imaging of cGMP signals in platelets. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	0
47	Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5527-5532.	3.3	134
48	Correlative intravital imaging of cGMP signals and vasodilation in mice. Frontiers in Physiology, 2014, 5, 394.	1.3	21
49	<i>Endless</i> : A Purineâ€Binding RNA Motif that Can Be Expressed in Cells. Angewandte Chemie - International Edition, 2014, 53, 9198-9202.	7.2	11
50	Upon the photostability of 8-nitro-cGMP and its caging as a 7-dimethylaminocoumarinyl ester. Chemical Communications, 2014, 50, 7120.	2.2	4
51	Genetic Inducible Fate Mapping in Adult Mice Using Tamoxifen-Dependent Cre Recombinases. Methods in Molecular Biology, 2014, 1194, 113-139.	0.4	13
52	Cyclic GMP-mediated intercellular communication in mammalian ovarian follicles. BMC Pharmacology & Toxicology, 2013, 14, .	1.0	0
53	Analysis of cGMP signalling with transgenic mice expressing FRET-based cGMP sensors. BMC Pharmacology & Toxicology, 2013, 14, .	1.0	1
54	Visualization of cGMP with cGi Biosensors. Methods in Molecular Biology, 2013, 1020, 89-120.	0.4	28

#	Article	IF	CITATIONS
55	Transgenic Mice for cGMP Imaging. Circulation Research, 2013, 113, 365-371.	2.0	66
56	H2O2 lowers the cytosolic Ca2+ concentration via activation of cGMP-dependent protein kinase lα. Free Radical Biology and Medicine, 2012, 53, 1574-1583.	1.3	27
57	Noninvasive Nuclear Imaging Enables the In Vivo Quantification of Striatal Dopamine Receptor Expression and Raclopride Affinity in Mice. Journal of Nuclear Medicine, 2011, 52, 1133-1141.	2.8	29
58	Anemia and splenomegaly in cGKI-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6771-6776.	3.3	135