Mun Fei Yam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9162902/publications.pdf Version: 2024-02-01

MUN FELYAM

#	Article	IF	CITATIONS
1	A novel machine learning scheme for classification of medicinal herbs based on 2D-FTIR fingerprints. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120440.	3.9	4
2	Herbal Medicines as Sources of an Evidence-Based Pharmacological Research Paradigm: improving research translation. Journal of Pharmacopuncture, 2022, 25, 68-69.	1.1	2
3	The predominance of endothelium-derived relaxing factors and beta-adrenergic receptor pathways in strong vasorelaxation induced by 4-hydroxybenzaldehyde in the rat aorta. Biomedicine and Pharmacotherapy, 2022, 150, 112905.	5.6	2
4	Comparison of FTIR spectrum with chemometric and machine learning classifying analysis for differentiating guan-mutong a nephrotoxic and carcinogenic traditional chinese medicine with chuan-mutong. Microchemical Journal, 2021, 163, 105835.	4.5	17
5	A fast and reliable 2D-IR spectroscopic technique for herbal leaves classification. Vibrational Spectroscopy, 2020, 106, 103014.	2.2	7
6	In vitro study and structure-activity relationship analysis of stilbenoid derivatives as powerful vasorelaxants: Discovery of new lead compound. Bioorganic Chemistry, 2020, 104, 104239.	4.1	3
7	Synthesis, characterization, and anti ancer activity of new chalcone derivatives containing naphthalene and fluorine moieties. Drug Development Research, 2020, 81, 994-1003.	2.9	14
8	Proapoptotic and Antiangiogenic Activities of <i>Arctium Lappa</i> L. on Breast Cancer Cell Lines. Scientifica, 2020, 2020, 1-14.	1.7	11
9	New flavonoid-based compound synthesis strategy for antihypertensive drug development. Life Sciences, 2020, 249, 117512.	4.3	15
10	Vasorelaxant effect of 3,5,4′-trihydroxy-trans-stilbene (resveratrol) and its underlying mechanism. Inflammopharmacology, 2020, 28, 869-875.	3.9	22
11	Creation of Novel Antihypertensive Agent via Structure-Activity Relationship Study on Phytochemicals towards Vasorelaxant Activity. Journal of Pharmacopuncture, 2020, 23, 88-89.	1.1	0
12	Creation of Novel Antihypertensive Agent via Structure-Activity Relationship Study on Phytochemicals towards Vasorelaxant Activity. Journal of Pharmacopuncture, 2020, 23, 88-89.	1.1	2
13	Wound Healing Property of Curcuminoids as a Microcapsule-Incorporated Cream. Pharmaceutics, 2019, 11, 205.	4.5	7
14	Cytostatic and Antiproliferative Activities of F5 Fraction of Crinum amabile Leaf Chloroform Extract Showed Its Potential as Cancer Chemotherapeutic Agent. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-13.	1.2	3
15	<i>In Vitro</i> Antiplasmodium and Chloroquine Resistance Reversal Effects of Andrographolide. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-16.	1.2	7
16	Vasorelaxant and chemical fingerprint studies of Citrus reticulatae pericarpium extracts. Journal of Ethnopharmacology, 2019, 232, 135-144.	4.1	11
17	Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 271-282.	3.9	19
18	Mechanism of vasorelaxation induced by 3â€2-hydroxy-5,6,7,4â€2-tetramethoxyflavone in the rats aortic ring assay. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 561-569.	3.0	8

Mun Fei Yam

#	Article	IF	CITATIONS
19	Anti-hypertensive and vasodilatory effects of amended Banxia Baizhu Tianma Tang. Biomedicine and Pharmacotherapy, 2018, 97, 985-994.	5.6	21
20	Overview of the Microenvironment of Vasculature in Vascular Tone Regulation. International Journal of Molecular Sciences, 2018, 19, 120.	4.1	27
21	Orthogonal Stimulus-Response as a Tool to Formulate Traditional Chinese Medicinal Herbal Combination: - New Scientific-Based TCM Herbal Formulating Method. Journal of Pharmacopuncture, 2018, 21, 203-206.	1.1	1
22	Orthogonal Stimulus-Response as a Tool to Formulate Traditional Chinese Medicinal Herbal Combination. Journal of Pharmacopuncture, 2018, 21, 203-206.	1.1	2
23	Vasorelaxation effect of Glycyrrhizae uralensis through the endothelium-dependent Pathway. Journal of Ethnopharmacology, 2017, 199, 149-160.	4.1	22
24	Decomposition and Reformulation of Banxia Baizhu Tianma Decoction: A Vasodilatory Approach. Chinese Herbal Medicines, 2017, 9, 134-146.	3.0	8
25	Vasodilatory Effects of Combined Traditional Chinese Medicinal Herbs in Optimized Ratio. Journal of Medicinal Food, 2017, 20, 265-278.	1.5	15
26	Overview of Signaling Mechanism Pathways Employed by BPAid in Vasodilatory Activity. Journal of Medicinal Food, 2017, 20, 1201-1213.	1.5	9
27	Vasorelaxant properties of <i>Vernonia amygdalina</i> ethanol extract and its possible mechanism. Pharmaceutical Biology, 2017, 55, 2083-2094.	2.9	30
28	Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules, 2016, 21, 495.	3.8	22
29	Mechanism of vasorelaxation induced by eupatorin in the rats aortic ring. European Journal of Pharmacology, 2016, 789, 27-36.	3.5	27
30	Evaluation of <i>α</i> -Glucosidase Inhibitory Effect of 50% Ethanolic Standardized Extract of <i>Orthosiphon stamineus</i> Benth in Normal and Streptozotocin-Induced Diabetic Rats. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-6.	1.2	16
31	Investigation of Antioxidant and Hepatoprotective Activity of Standardized <i>Curcuma xanthorrhiza</i> Rhizome in Carbon Tetrachloride-Induced Hepatic Damaged Rats. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	21
32	Antioxidant and Toxicity Studies of 50% Methanolic Extract ofOrthosiphon stamineusBenth. BioMed Research International, 2013, 2013, 1-10.	1.9	12
33	Evaluation of the Antinociceptive Activity and Acute Oral Toxicity of Standardized Ethanolic Extract of the Rhizome of Curcuma xanthorrhiza Roxb. Molecules, 2010, 15, 2925-2934.	3.8	43