MarÃ-a Soledad Andrades

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9162041/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticide hydrophobicity. Applied Clay Science, 2006, 31, 216-228.	2.6	198
2	Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. Journal of Hydrology, 2013, 486, 234-245.	2.3	154
3	Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Science of the Total Environment, 2017, 609, 161-171.	3.9	90
4	Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils. Journal of Hazardous Materials, 2007, 139, 363-372.	6.5	83
5	Pesticide residues in vineyard soils from Spain: Spatial and temporal distributions. Science of the Total Environment, 2015, 514, 351-358.	3.9	79
6	Field-scale dissipation of tebuconazole in a vineyard soil amended with spent mushroom substrate and its potential environmental impact. Ecotoxicology and Environmental Safety, 2011, 74, 1480-1488.	2.9	65
7	Relationship between The Adsorption Capacity of Pesticides by Wood Residues and The Properties of Woods and Pesticides. Environmental Science & amp; Technology, 2007, 41, 3613-3619.	4.6	62
8	Significance of Soil Properties in the Adsorption and Mobility of the Fungicide Metalaxyl in Vineyard Soils. Journal of Agricultural and Food Chemistry, 2001, 49, 2363-2369.	2.4	53
9	Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Science of the Total Environment, 2014, 476-477, 611-621.	3.9	53
10	Significance of the long-chain organic cation structure in the sorption of the penconazole and metalaxyl fungicides by organo clays. Journal of Hazardous Materials, 2008, 160, 200-207.	6.5	47
11	Effect of Spent Mushroom Substrate Amendment of Vineyard Soils on the Behavior of Fungicides: 1. Adsorptionâ~Desorption of Penconazole and Metalaxyl by Soils and Subsoils. Journal of Agricultural and Food Chemistry, 2009, 57, 9634-9642.	2.4	44
12	Dissipation of Fungicides in a Vineyard Soil Amended with Different Spent Mushroom Substrates. Journal of Agricultural and Food Chemistry, 2012, 60, 6936-6945.	2.4	42
13	Assessment of pesticide residues in waters and soils of a vineyard region and its temporal evolution. Environmental Pollution, 2021, 284, 117463.	3.7	42
14	Application of a biosorbent to soil: a potential method for controlling water pollution by pesticides. Environmental Science and Pollution Research, 2016, 23, 9192-9203.	2.7	41
15	Pesticide desorption from soils facilitated by dissolved organic matter coming from composts: experimental data and modelling approach. Biogeochemistry, 2011, 106, 117-133.	1.7	39
16	Changes in the sorption–desorption of fungicides over time in an amended sandy clay loam soil under laboratory conditions. Journal of Soils and Sediments, 2012, 12, 1111-1123.	1.5	39
17	Comparison of Pesticide Sorption by Physicochemically Modified Soils with Natural Soils as a Function of Soil Properties and Pesticide Hydrophobicity. Soil and Sediment Contamination, 2006, 15, 401-415.	1.1	32
18	Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil. Journal of Environmental Management, 2015, 163, 78-86.	3.8	30

#	Article	IF	CITATIONS
19	Intra-annual trends of fungicide residues in waters from vineyard areas in La Rioja region of northern Spain. Environmental Science and Pollution Research, 2016, 23, 22924-22936.	2.7	29
20	Effect of Different Wood Pretreatments on the Sorptionâ^'Desorption of Linuron and Metalaxyl by Woods. Journal of Agricultural and Food Chemistry, 2008, 56, 7339-7346.	2.4	28
21	Effect of the modification of natural clay minerals with hexadecylpyridinium cation on the adsorption–desorption of fungicides. International Journal of Environmental Analytical Chemistry, 2004, 84, 133-141.	1.8	27
22	Effect of the Addition of Wine Distillery Wastes To Vineyard Soils on the Adsorption and Mobility of Fungicides. Journal of Agricultural and Food Chemistry, 2004, 52, 3022-3029.	2.4	24
23	Retention of pesticides in soil columns modified in situ and ex situ with a cationic surfactant. Science of the Total Environment, 2007, 378, 104-108.	3.9	23
24	Assessment of Spent Mushroom Substrate as Sorbent of Fungicides: Influence of Sorbent and Sorbate Properties. Journal of Environmental Quality, 2012, 41, 814-822.	1.0	21
25	Occurrence of phenols and phenoxyacid herbicides in environmental waters using an imprinted polymer as a selective sorbent. Science of the Total Environment, 2013, 454-455, 299-306.	3.9	21
26	Effect of Spent Mushroom Substrate Amendment of Vineyard Soils on the Behavior of Fungicides: 2. Mobility of Penconazole and Metalaxyl in Undisturbed Soil Cores. Journal of Agricultural and Food Chemistry, 2009, 57, 9643-9650.	2.4	17
27	Application of green compost as amendment in an agricultural soil: Effect on the behaviour of triasulfuron and prosulfocarb under field conditions. Journal of Environmental Management, 2018, 207, 180-191.	3.8	16
28	Multivariate Statistical and GIS-Based Approach for the Identification of Mn and Ni Concentrations and Spatial Variability in Soils of a Humid Mediterranean Environment: La Rioja, Spain. Water, Air, and Soil Pollution, 2011, 222, 271-284.	1.1	15
29	Lead and Cadmium in Soils of La Rioja Vineyards, Spain. Land Degradation and Development, 2016, 27, 1286-1294.	1.8	15
30	Effect of spent mushroom substrate applied to vineyard soil on the behaviour of copper-based fungicide residues. Journal of Environmental Management, 2011, 92, 1849-1857.	3.8	14
31	Pesticides and degradation products in groundwaters from a vineyard region: Optimization of a multiresidue method based on SPE and GC-MS. Journal of Separation Science, 2012, 35, 3492-3500.	1.3	14
32	Spatial Variability of Cadmium and Lead in Natural Soils of a Humid Mediterranean Environment: La Rioja, Spain. Archives of Environmental Contamination and Toxicology, 2013, 64, 594-604.	2.1	11
33	Long-term variability of metals from fungicides applied in amended young vineyard fields of La Rioja (Spain). Environmental Monitoring and Assessment, 2012, 184, 3359-3371.	1.3	8
34	Background values and distribution trends of Cu and Zn in soils of humid Mediterranean environment. Chemistry and Ecology, 2014, 30, 252-266.	0.6	6
35	Mn and Ni contents in soils of a qualified denomination of origin region: Rioja D.O.Ca, Spain. International Journal of Environmental Studies, 2016, 73, 32-47.	0.7	1
36	Soil property variability in a humid natural Mediterranean environment: La Rioja, Spain Spanish Journal of Soil Science, 0, 2, .	0.0	1

#	Article	IF	CITATIONS
37	Soil spatial variability in the vineyards of La Rioja PDOC (Spain). International Journal of Environmental Studies, 0, , 1-11.	0.7	0