Annamaria Petrozza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/916192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013, 342, 341-344.	6.0	8,703
2	Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 3061-3068.	15.6	2,086
3	Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. Journal of the American Chemical Society, 2015, 137, 10276-10281.	6.6	1,765
4	Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5, 3586.	5.8	1,443
5	Highly efficient planar perovskite solar cells through band alignment engineering. Energy and Environmental Science, 2015, 8, 2928-2934.	15.6	1,097
6	Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500963.	10.2	1,045
7	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	15.6	970
8	Defects in perovskite-halides and their effects in solar cells. Nature Energy, 2016, 1, .	19.8	886
9	Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. Journal of the American Chemical Society, 2016, 138, 1010-1016.	6.6	747
10	Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells. Nano Letters, 2014, 14, 3247-3254.	4.5	651
11	Hot exciton dissociation in polymer solar cells. Nature Materials, 2013, 12, 29-33.	13.3	567
12	The Raman Spectrum of the CH ₃ NH ₃ PbI ₃ Hybrid Perovskite: Interplay of Theory and Experiment. Journal of Physical Chemistry Letters, 2014, 5, 279-284.	2.1	555
13	Plasmonic Dye-Sensitized Solar Cells Using Coreâ^'Shell Metalâ^'Insulator Nanoparticles. Nano Letters, 2011, 11, 438-445.	4.5	550
14	Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite. Journal of the American Chemical Society, 2014, 136, 17730-17733.	6.6	546
15	Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nature Energy, 2017, 2, .	19.8	544
16	Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy and Environmental Science, 2017, 10, 604-613.	15.6	525
17	lodine chemistry determines the defect tolerance of lead-halide perovskites. Energy and Environmental Science, 2018, 11, 702-713.	15.6	480
18	The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano, 2015, 9, 9380-9393.	7.3	451

#	Article	IF	CITATIONS
19	Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films. ACS Energy Letters, 2017, 2, 1416-1424.	8.8	437
20	Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy and Environmental Science, 2016, 9, 155-163.	15.6	423
21	Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy and Environmental Science, 2016, 9, 3472-3481.	15.6	409
22	Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Materials Horizons, 2015, 2, 315-322.	6.4	366
23	Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al ₂ O ₃ Buffer Layer. Journal of Physical Chemistry Letters, 2015, 6, 432-437.	2.1	343
24	Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. Journal of the American Chemical Society, 2017, 139, 39-42.	6.6	336
25	17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy and Environmental Science, 2015, 8, 2365-2370.	15.6	300
26	Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy and Environmental Science, 2018, 11, 2609-2619.	15.6	276
27	Controlling competing photochemical reactions stabilizes perovskite solar cells. Nature Photonics, 2019, 13, 532-539.	15.6	273
28	Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nature Materials, 2019, 18, 349-356.	13.3	257
29	The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics. Journal of Physical Chemistry Letters, 2014, 5, 3836-3842.	2.1	238
30	Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites. Nature Photonics, 2015, 9, 695-701.	15.6	226
31	Mapping Electric Fieldâ€Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 2015, 5, 1500962.	10.2	225
32	CH ₃ NH ₃ PbI ₃ perovskite single crystals: surface photophysics and their interaction with the environment. Chemical Science, 2015, 6, 7305-7310.	3.7	192
33	Defect Activity in Lead Halide Perovskites. Advanced Materials, 2019, 31, e1901183.	11.1	191
34	Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the <i>J</i> – <i>V</i> Characteristics of Inverted Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501453.	10.2	167
35	White light emission in low-dimensional perovskites. Journal of Materials Chemistry C, 2019, 7, 4956-4969.	2.7	163
36	Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors. ACS Energy Letters, 2016, 1, 726-730.	8.8	137

#	Article	IF	CITATIONS
37	Charge Generation and Photovoltaic Operation of Solid tate Dyeâ€5ensitized Solar Cells Incorporating a High Extinction Coefficient Indoleneâ€Based Sensitizer. Advanced Functional Materials, 2009, 19, 1810-1818.	7.8	125
38	Defect activity in metal halide perovskites with wide and narrow bandgap. Nature Reviews Materials, 2021, 6, 986-1002.	23.3	121
39	Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Physical Review Materials, 2018, 2, .	0.9	116
40	Probing femtosecond lattice displacement upon photo-carrier generation in lead halide perovskite. Nature Communications, 2018, 9, 1971.	5.8	113
41	Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure. Accounts of Chemical Research, 2016, 49, 536-544.	7.6	107
42	The Renaissance of fullerenes with perovskite solar cells. Nano Energy, 2017, 41, 84-100.	8.2	104
43	Evidence of Spiro-OMeTAD De-doping by tert-Butylpyridine Additive in Hole-Transporting Layers for Perovskite Solar Cells. CheM, 2019, 5, 1806-1817.	5.8	100
44	Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication. Nano Letters, 2018, 18, 6915-6923.	4.5	98
45	Ultrafast THz Probe of Photoinduced Polarons in Lead-Halide Perovskites. Physical Review Letters, 2019, 122, 166601.	2.9	98
46	Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites. APL Materials, 2014, 2, .	2.2	89
47	Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Physical Review Materials, 2018, 2, .	0.9	89
48	Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Energy and Environmental Science, 2020, 13, 1776-1787.	15.6	87
49	Defect Tolerance and Intolerance in Metalâ€Halide Perovskites. Advanced Energy Materials, 2020, 10, 2001959.	10.2	85
50	Optoelectronic and Charge Transport Properties at Organicâ^'Organic Semiconductor Interfaces: Comparison between Polyfluorene-Based Polymer Blend and Copolymer. Journal of the American Chemical Society, 2008, 130, 13120-13131.	6.6	84
51	New Generation Hole Transporting Materials for Perovskite Solar Cells: Amideâ€Based Smallâ€Molecules with Nonconjugated Backbones. Advanced Energy Materials, 2018, 8, 1801605.	10.2	78
52	Defect Engineering in 2D Perovskite by Mn(II) Doping for Light-Emitting Applications. CheM, 2019, 5, 2146-2158.	5.8	78
53	Regulation of photosystem I light harvesting by zeaxanthin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2431-8.	3.3	73
54	Nonlinear Carrier Interactions in Lead Halide Perovskites and the Role of Defects. Journal of the American Chemical Society, 2016, 138, 13604-13611.	6.6	73

#	Article	IF	CITATIONS
55	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie - International Edition, 2017, 56, 6753-6757.	7.2	72
56	Influence of Ion Induced Local Coulomb Field and Polarity on Charge Generation and Efficiency in Poly(3â€Hexylthiophene)â€Based Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2011 21, 2571-2579.	, 7.8	68
57	Hyperbranched Quasi-1D Nanostructures for Solid-State Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 10023-10031.	7.3	65
58	Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications. Journal of Materials Chemistry A, 2013, 1, 6572.	5.2	64
59	Modulating the Electron–Hole Interaction in a Hybrid Lead Halide Perovskite with an Electric Field. Journal of the American Chemical Society, 2015, 137, 15451-15459.	6.6	61
60	Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography. Advanced Materials, 2013, 25, 904-909.	11.1	59
61	<i>N</i> -Methylformamide as a Source of Methylammonium Ions in the Synthesis of Lead Halide Perovskite Nanocrystals and Bulk Crystals. ACS Energy Letters, 2016, 1, 1042-1048.	8.8	59
62	Control of Rapid Formation of Interchain Excited States in Sugarâ€Threaded Supramolecular Wires. Advanced Materials, 2008, 20, 3218-3223.	11.1	56
63	Functionalization of transparent conductive oxide electrode for TiO ₂ -free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11882-11893.	5.2	56
64	Electron Transport and Recombination in Dye-Sensitized Mesoporous TiO2 Probed by Photoinduced Charge-Conductivity Modulation Spectroscopy with Monte Carlo Modeling. Journal of the American Chemical Society, 2008, 130, 12912-12920.	6.6	55
65	Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Optics Express, 2017, 25, 13199.	1.7	55
66	High‣ensitivity Flexible Xâ€Ray Detectors based on Printed Perovskite Inks. Advanced Functional Materials, 2021, 31, 2009072.	7.8	55
67	High Extinction Coefficient "Antenna―Dye in Solid-State Dye-Sensitized Solar Cells: A Photophysical and Electronic Study. Journal of Physical Chemistry C, 2008, 112, 7562-7566.	1.5	52
68	Vibrational Response of Methylammonium Lead Iodide: From Cation Dynamics to Phonon–Phonon Interactions. ChemSusChem, 2016, 9, 2994-3004.	3.6	51
69	Fully Solutionâ€Processed n–i–pâ€Like Perovskite Solar Cells with Planar Junction: How the Charge Extracting Layer Determines the Openâ€Circuit Voltage. Advanced Materials, 2017, 29, 1604493.	11.1	50
70	Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 11741-11754.	4.0	45
71	Broadband Defects Emission and Enhanced Ligand Raman Scattering in OD Cs ₃ Bi ₂ I ₉ Colloidal Nanocrystals. Advanced Functional Materials, 2019, 29, 1805299.	7.8	44
72	Role of Excess FAI in Formation of Highâ€Efficiency FAPbI ₃ â€Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1906875.	7.8	44

#	Article	IF	CITATIONS
73	The effect of selective interactions at the interface of polymer–oxide hybrid solar cells. Energy and Environmental Science, 2012, 5, 9068.	15.6	42
74	Metal Coordination Sphere Deformation Induced Highly Stokes‧hifted, Ultra Broadband Emission in 2D Hybrid Leadâ€Bromide Perovskites and Investigation of Its Origin. Angewandte Chemie - International Edition, 2020, 59, 10791-10796.	7.2	42
75	Electron–Phonon Couplings Inherent in Polarons Drive Exciton Dynamics in Two-Dimensional Metal-Halide Perovskites. Chemistry of Materials, 2019, 31, 7085-7091.	3.2	40
76	Ultrafast Energy Transfer in Ultrathin Organic Donor/Acceptor Blend. Scientific Reports, 2013, 3, 2073.	1.6	39
77	A polyfluoroalkyl imidazolium ionic liquid as iodide ion source in dye sensitized solar cells. Organic Electronics, 2012, 13, 2474-2478.	1.4	37
78	Metalâ€Free Benzodithiopheneâ€Containing Organic Dyes for Dye‣ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 84-94.	1.2	36
79	Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HT. Solar Rrl, 2018, 2, 1800013.	3.1	36
80	An Organic "Donorâ€Free―Dye with Enhanced Openâ€Circuit Voltage in Solidâ€State Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400166.	10.2	35
81	Clues from defect photochemistry. Nature Materials, 2018, 17, 383-384.	13.3	35
82	Crystal Engineering of a Twoâ€Ðimensional Leadâ€Free Perovskite with Functional Organic Cations by Second‧phere Coordination. ChemPlusChem, 2017, 82, 681-685.	1.3	34
83	Photophysical Properties of a Series of Poly(ladderâ€ŧype phenylene)s. Advanced Functional Materials, 2007, 17, 3231-3240.	7.8	32
84	Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation. Scientific Reports, 2014, 4, 5211.	1.6	32
85	The role of a dark exciton reservoir in the luminescence efficiency of two-dimensional tin iodide perovskites. Journal of Materials Chemistry C, 2020, 8, 10889-10896.	2.7	31
86	Nature of Charge Carriers in a High Electron Mobility Naphthalenediimide Based Semiconducting Copolymer. Advanced Functional Materials, 2014, 24, 5584-5593.	7.8	30
87	Dielectric switching of the nature of excited singlet state in a donor-acceptor-type polyfluorene copolymer. Physical Review B, 2010, 81, .	1.1	29
88	Fabrication of flexible all-inorganic nanocrystal solar cells by room-temperature processing. Energy and Environmental Science, 2013, 6, 1565.	15.6	29
89	Highâ€Quality, Ligandsâ€Free, Mixedâ€Halide Perovskite Nanocrystals Inks for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1601703.	10.2	29
90	Moisture resistance in perovskite solar cells attributed to a water-splitting layer. Communications Materials, 2021, 2, .	2.9	29

#	Article	IF	CITATIONS
91	Disentangling Electron–Phonon Coupling and Thermal Expansion Effects in the Band Gap Renormalization of Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2021, 12, 569-575.	2.1	29
92	Layered Perovskite Doping with Eu ³⁺ and β-diketonate Eu ³⁺ Complex. Chemistry of Materials, 2021, 33, 2289-2297.	3.2	28
93	Thermoelectric Properties of Highly Conductive Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Printed Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 18151-18160.	4.0	27
94	Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites. APL Materials, 2018, 6, .	2.2	26
95	Role of Hot Singlet Excited States in Charge Generation at the Black Dye/TiO ₂ Interface. ACS Applied Materials & Interfaces, 2013, 5, 4334-4339.	4.0	25
96	Trends in Perovskite Solar Cells and Optoelectronics: Status of Research and Applications from the PSCO Conference. ACS Energy Letters, 2017, 2, 857-861.	8.8	25
97	High-Detectivity Perovskite Light Detectors Printed in Air from Benign Solvents. CheM, 2019, 5, 868-880.	5.8	25
98	Enhanced screening and spectral diversity in many-body elastic scattering of excitons in two-dimensional hybrid metal-halide perovskites. Physical Review Research, 2019, 1, .	1.3	24
99	High External Photoluminescence Quantum Yield in Tin Halide Perovskite Thin Films. ACS Energy Letters, 2021, 6, 609-611.	8.8	23
100	Effect of electronic doping and traps on carrier dynamics in tin halide perovskites. Materials Horizons, 2022, 9, 1763-1773.	6.4	23
101	Two-dimensional charge transport in molecularly ordered polymer field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 11135-11142.	2.7	22
102	Ultrafast dissociation of triplets in pentacene induced by an electric field. Physical Review B, 2014, 90,	1.1	20
103	Optical Gain of Lead Halide Perovskites Measured via the Variable Stripe Length Method: What We Can Learn and How to Avoid Pitfalls. Advanced Optical Materials, 2021, 9, 2001773.	3.6	20
104	Lattice Distortions Drive Electron–Hole Correlation within Micrometer-Size Lead-Iodide Perovskite Crystals. ACS Energy Letters, 2017, 2, 265-269.	8.8	19
105	Thermal- and Light-Induced Evolution of the 2D/3D Interface in Lead-Halide Perovskite Films. ACS Applied Materials & Interfaces, 2022, 14, 34180-34188.	4.0	19
106	X-ray Photoemission Spectroscopy Investigation of the Interaction between 4-Mercaptopyridine and the Anatase TiO2 Surface. Langmuir, 2013, 29, 8302-8310.	1.6	18
107	The critical role of interfacial dynamics in the stability of organic photovoltaic devices. Physical Chemistry Chemical Physics, 2014, 16, 8294-8300.	1.3	18
108	Effect of polymer morphology on P3HT-based solid-state dye sensitized solar cells: an ultrafast spectroscopic investigation. Optics Express, 2013, 21, A469.	1.7	17

Annamaria Petrozza

#	Article	IF	CITATIONS
109	Revisiting photocarrier lifetimes in photovoltaics. Nature Photonics, 2016, 10, 562-562.	15.6	17
110	Synergistic effects of interfacial modifiers enhance current and voltage in hybrid solar cells. APL Materials, 2013, 1, .	2.2	16
111	Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D. Advanced Functional Materials, 2014, 24, 3043-3050.	7.8	16
112	Engineering Multiphase Metal Halide Perovskites Thin Films for Stable and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 1903221.	10.2	16
113	Reply to 'Measuring internal quantum efficiency to demonstrate hot exciton dissociation'. Nature Materials, 2013, 12, 594-595.	13.3	15
114	A dual-phase architecture for efficient amplified spontaneous emission in lead iodide perovskites. Journal of Materials Chemistry C, 2016, 4, 4630-4633.	2.7	15
115	Understanding Charge Transport in Highâ€Mobility <i>pâ€</i> Doped Multicomponent Blend Organic Transistors. Advanced Electronic Materials, 2020, 6, 2000539.	2.6	15
116	Panchromatic "Dye-Doped―Polymer Solar Cells: From Femtosecond Energy Relays to Enhanced Photo-Response. Journal of Physical Chemistry Letters, 2013, 4, 442-447.	2.1	14
117	Enhancing light harvesting by hierarchical functionally graded transparent conducting Al-doped ZnO nano- and mesoarchitectures. Solar Energy Materials and Solar Cells, 2014, 128, 248-253.	3.0	14
118	Hyperbranched Quasi-1D TiO ₂ Nanostructure for Hybrid Organic–Inorganic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 7451-7455.	4.0	14
119	High speed solution-processed hybrid perovskite photodetectors with low dark current enabled by a low temperature metal oxide interlayer. Semiconductor Science and Technology, 2018, 33, 094004.	1.0	14
120	Role of Molecular Thermodynamical Processes at Functionalized Polymer/Metaloxide Interfaces for Photovoltaics. Journal of Physical Chemistry C, 2013, 117, 13894-13901.	1.5	13
121	Impact of Molecular Charge-Transfer States on Photocurrent Generation in Solid State Dye-Sensitized Solar Cells Employing Low-Band-Gap Dyes. Journal of Physical Chemistry C, 2014, 118, 16825-16830.	1.5	13
122	Research Update: Luminescence in lead halide perovskites. APL Materials, 2016, 4, .	2.2	12
123	Organics go hybrid. Nature Photonics, 2017, 11, 20-22.	15.6	12
124	Ultrafast charge carrier dynamics in quantum confined 2D perovskite. Journal of Chemical Physics, 2020, 152, 214705.	1.2	12
125	Photoelectrochemical water splitting by hybrid organic-inorganic systems: Setting the path from 2% to 20% solar-to-hydrogen conversion efficiency. IScience, 2021, 24, 102463.	1.9	12
126	Coordinating Solvent-Assisted Synthesis of Phase-Stable Perovskite Nanocrystals with High Yield Production for Optoelectronic Applications. Chemistry of Materials, 2021, 33, 547-553.	3.2	11

Annamaria Petrozza

#	Article	lF	CITATIONS
127	Charge Generation at Polymer/Metal Oxide Interface: from Molecular Scale Dynamics to Mesoscopic Effects. Advanced Functional Materials, 2014, 24, 3094-3099.	7.8	10
128	Hexa-substituted benzene derivatives as hole transporting materials for efficient perovskite solar cells. Dyes and Pigments, 2019, 163, 267-273.	2.0	10
129	Imaging photoinduced surface potentials on hybrid perovskites by real-time Scanning Electron Microscopy. Micron, 2019, 121, 53-65.	1.1	9
130	Time-Dependent Field Effect in Three-Dimensional Lead-Halide Perovskite Semiconductor Thin Films. ACS Applied Energy Materials, 2021, 4, 10603-10609.	2.5	9
131	Light energy harvesting with nano-dipoles. Nanoscale, 2012, 4, 1728.	2.8	8
132	Energy Distribution in Tin Halide Perovskite. Solar Rrl, 2022, 6, 2100825.	3.1	8
133	Defect Passivation through (α-Methylguanido)acetic Acid in Perovskite Solar Cell for High Operational Stability. ACS Applied Materials & Interfaces, 2022, 14, 20848-20855.	4.0	8
134	Ultrafast spectroscopic imaging of exfoliated graphene. Physica Status Solidi (B): Basic Research, 2012, 249, 2497-2499.	0.7	7
135	Effects of Polymer Packing Structure on Photoinduced Triplet Generation and Dynamics. Journal of Physical Chemistry C, 2012, 116, 11298-11305.	1.5	7
136	Three-Dimensional Self-Assembly of Networked Branched TiO2 Nanocrystal Scaffolds for Efficient Room-Temperature Processed Depleted Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5026-5033.	4.0	7
137	Metal Coordination Sphere Deformation Induced Highly Stokesâ€Shifted, Ultra Broadband Emission in 2D Hybrid Leadâ€Bromide Perovskites and Investigation of Its Origin. Angewandte Chemie, 2020, 132, 10883-10888.	1.6	7
138	Photoemission study of the Poly(3-hexylthiophene)/TiO2 interface and the role of 4-Mercaptopyridine. Thin Solid Films, 2014, 560, 39-43.	0.8	6
139	Dynamical Imaging of Surface Photopotentials in Hybrid Lead Iodide Perovskite Films under High Optical Irradiance and the Role of Selective Contacts. Advanced Materials Interfaces, 2020, 7, 2000297.	1.9	6
140	Photoactive Molecular Junctions Based on Self-Assembled Monolayers of Indoline Dyes. ACS Applied Materials & amp; Interfaces, 2014, 6, 19774-19782.	4.0	5
141	Humidity-robust scalable metal halide perovskite film deposition for photovoltaic applications. Journal of Materials Chemistry A, 2020, 8, 25283-25289.	5.2	5
142	Doping of Soft Semiconductors. ACS Energy Letters, 2022, 7, 1101-1102.	8.8	5
143	Room-temperature treatments for all-inorganic nanocrystal solar cell devices. Thin Solid Films, 2014, 560, 44-48.	0.8	4
144	CsPbBr ₃ nanocrystal inks for printable light harvesting devices. Sustainable Energy and Fuels, 2020, 4, 171-176.	2.5	4

ANNAMARIA PETROZZA

#	Article	IF	CITATIONS
145	Photo-active integrated getters for stable dye-sensitized solar cells. RSC Advances, 2013, 3, 2163.	1.7	3
146	New Synthetic Route of Ultrapure Alkylammonium lodides for Perovskite Thin Films of Superior Optoelectronic Properties. Energy Technology, 2020, 8, 2000478.	1.8	3
147	Photophysics of Hybrid Perovskites. RSC Energy and Environment Series, 2016, , 107-140.	0.2	3
148	Ultrafast exciton dissociation at donor/acceptor interfaces. , 2013, , .		1
149	Infiltration and Selective Interactions at the Interface in Polymer-Oxide Hybrid Solar Cells. Journal of Physics: Conference Series, 2013, 443, 012051.	0.3	1
150	Atomistic simulations of thiol-terminated modifiers for hybrid photovoltaic interfaces. Thin Solid Films, 2014, 560, 34-38.	0.8	1
151	Semiconducting organic polymers as hole-transport layer in solid-state dye sensitized solar cells: comprehensive insights from femtosecond transient spectroscopy and device optimization. , 2012, , .		0
152	Hot Exciton Dissociation at Organic Interfaces. Materials Research Society Symposia Proceedings, 2013, 1537, 1.	0.1	0
153	Lattice distortions drive electron-hole correlation within micrometer size lead-iodide perovskite. , 2017, , .		0
154	Large polaron evidence in the ultrafast THz response of Lead-Halide Perovskites. EPJ Web of Conferences, 2019, 205, 04019.	0.1	0
155	On the role of semiconducting polymer as hole-transport layer in solid-state dye sensitized solar cells. , 2012, , .		0
156	Ultrafast charge photogeneration in low band-gap semiconducting polymer based solid-state dye sensitized solar cell (sDSC). , 2014, , .		0
157	Evidences of De-Doped Spiro-OMeTAD Employing Tert-Butyl Pyridine As Additive in Hole-Transporting Layers for n-i-p Perovskite Photovoltaics. SSRN Electronic Journal, 0, , .	0.4	0
158	Let Us Go Beyond (Covid-19 and Our Technology Readiness Level). ACS Energy Letters, 2020, 5, 3879-3880.	8.8	0
159	Exciton-Polaron Interplay in 2D perovskites. , 2020, , .		0