Brant M Weinstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9161872/publications.pdf

Version: 2024-02-01

23533 34105 15,263 119 52 111 citations h-index g-index papers 161 161 161 14868 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Long-term imaging of living adult zebrafish. Development (Cambridge), 2022, 149, .	2.5	8
2	Anatomy and development of the pectoral fin vascular network in the zebrafish. Development (Cambridge), 2022, 149 , .	2.5	6
3	In vivo dissection of Rhoa function in vascular development using zebrafish. Angiogenesis, 2022, 25, 411-434.	7.2	5
4	Live Imaging of Intracranial Lymphatics in the Zebrafish. Circulation Research, 2021, 128, 42-58.	4.5	39
5	Maternal control of visceral asymmetry evolution in Astyanax cavefish. Scientific Reports, 2021, 11, 10312.	3.3	7
6	Rapid Generation of Pigment Free, Immobile Zebrafish Embryos and Larvae in Any Genetic Background Using CRISPR-Cas9 dgRNPs. Zebrafish, 2021, 18, 235-242.	1.1	4
7	To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis, 2021, 24, 251-269.	7.2	19
8	Assessment of Vascular Patterning in the Zebrafish. Methods in Molecular Biology, 2021, 2206, 205-222.	0.9	2
9	The Zebrafish Cardiovascular System. , 2020, , 131-143.		2
10	Chemokine mediated signalling within arteries promotes vascular smooth muscle cell recruitment. Communications Biology, 2020, 3, 734.	4.4	30
11	A hypomorphic cystathionine $ ilde{A}$ '-synthase gene contributes to cavefish eye loss by disrupting optic vasculature. Nature Communications, 2020, 11, 2772.	12.8	18
12	Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling. Nature Communications, 2020, 11 , 1204 .	12.8	16
13	ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nature Medicine, 2019, 25, 1116-1122.	30.7	136
14	Advantages and Challenges of Cardiovascular and Lymphatic Studies in Zebrafish Research. Frontiers in Cell and Developmental Biology, 2019, 7, 89.	3.7	5
15	MicroRNA-mediated control of developmental lymphangiogenesis. ELife, 2019, 8, .	6.0	15
16	The zebrafish: A fintastic model for hematopoietic development and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e312.	5.9	134
17	Growth Differentiation Factor 6 Promotes Vascular Stability by Restraining Vascular Endothelial Growth Factor Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 353-362.	2.4	25
18	An epigenetic mechanism for cavefish eye degeneration. Nature Ecology and Evolution, 2018, 2, 1155-1160.	7.8	78

#	Article	IF	CITATIONS
19	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	7.2	429
20	Mural-Endothelial cell-cell interactions stabilize the developing zebrafish dorsal aorta. Development (Cambridge), 2017, 144, 115-127.	2.5	84
21	Development of the larval lymphatic system in the zebrafish. Development (Cambridge), 2017, 144, 2070-2081.	2.5	62
22	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	3.5	255
23	A novel perivascular cell population in the zebrafish brain. ELife, 2017, 6, .	6.0	77
24	DNA methylation in hematopoietic development and disease. Experimental Hematology, 2016, 44, 783-790.	0.4	18
25	T Cell Immune Deficiency in <i>zap70</i> Mutant Zebrafish. Molecular and Cellular Biology, 2016, 36, 2868-2876.	2.3	37
26	Building the drains: the lymphatic vasculature in health and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 689-710.	5.9	26
27	Wnt9a Is Required for the Aortic Amplification of Nascent Hematopoietic Stem Cells. Cell Reports, 2016, 17, 1595-1606.	6.4	46
28	Temporal-specific roles of Rac1 during vascular development and retinal angiogenesis. Developmental Biology, 2016, 411, 183-194.	2.0	40
29	Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 655-662.	2.4	27
30	Epigenetic regulation of hematopoiesis by DNA methylation. ELife, 2016, 5, e11813.	6.0	36
31	Blood Vessel Formation. , 2015, , 421-449.		1
32	Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development (Cambridge), 2015, 143, 147-59.	2.5	47
33	Single cell analysis of endothelial morphogenesis <i>in vivo</i> . Development (Cambridge), 2015, 142, 2951-61.	2.5	48
34	Endothelial Cilia Are Essential for Developmental Vascular Integrity in Zebrafish. Journal of the American Society of Nephrology: JASN, 2015, 26, 864-875.	6.1	53
35	Emerging from the PAC: Studying zebrafish lymphatic development. Microvascular Research, 2014, 96, 23-30.	2.5	18
36	SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish. Developmental Biology, 2014, 390, 116-125.	2.0	48

3

#	Article	IF	CITATIONS
37	The role of <i>Hath6</i> , a novel shear stress-responsive transcription factor, in endothelial differentiation and function modulation. Journal of Cell Science, 2014, 127, 1428-40.	2.0	31
38	${\rm CBF\hat{l}^2}$ and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish. Blood, 2014, 124, 70-78.	1.4	50
39	Zebrafish Cbfb Is Required For The Mobilization, But Not The Emergence, Of Hematopoietic Stem Cells In Embryos. Blood, 2013, 122, 464-464.	1.4	0
40	Vascular Development in the Zebrafish. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006684-a006684.	6.2	216
41	Use of PCR Template-Derived Probes Prevents Off-Target Whole Mount <i>In Situ</i> Hybridization in Transgenic Zebrafish. Zebrafish, 2012, 9, 85-89.	1.1	9
42	CDP-diacylglycerol synthetase-controlled phosphoinositide availability limits VEGFA signaling and vascular morphogenesis. Blood, 2012, 120, 489-498.	1.4	38
43	ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nature Medicine, 2012, 18, 967-973.	30.7	105
44	Chemokine Signaling Directs Trunk Lymphatic Network Formation along the Preexisting Blood Vasculature. Developmental Cell, 2012, 22, 824-836.	7.0	119
45	Assembly and patterning of the vascular network of the vertebrate hindbrain. Development (Cambridge), 2011, 138, 1705-1715.	2.5	113
46	The Effect of Stocking Densities on Reproductive Performance in Laboratory Zebrafish (<i>Danio) Tj ETQq0 0 0 r</i>	gBT /Over	lock 10 Tf 50
47	Motoneurons are essential for vascular pathfinding. Development (Cambridge), 2011, 138, 3847-3857.	2.5	41
48	Loss of BRCC3 Deubiquitinating Enzyme Leads to Abnormal Angiogenesis and Is Associated with Syndromic Moyamoya. American Journal of Human Genetics, 2011, 88, 718-728.	6.2	109
49	Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3. Development (Cambridge), 2011, 138, 4875-4886.	2.5	95
50	Zebrafish as a Model for Hemorrhagic Stroke. Methods in Cell Biology, 2011, 105, 137-161.	1.1	18
51	Development of multilineage adult hematopoiesis in the zebrafish with a runx1 truncation mutation. Blood, 2010, 115, 2806-2809.	1.4	76
52	Imaging Blood Vessels in the Zebrafish. Methods in Cell Biology, 2010, 100, 27-54.	1.1	46
53	Loss of GATA1 and gain of FLI1 expression during thrombocyte maturation. Blood Cells, Molecules, and Diseases, 2010, 44, 175-180.	1.4	24
54	Common Factors Regulating Patterning of the Nervous and Vascular Systems*. Annual Review of Cell and Developmental Biology, 2010, 26, 639-665.	9.4	62

#	Article	lF	Citations
55	Arterial–Venous Specification During Development. Circulation Research, 2009, 104, 576-588.	4.5	365
56	Lymphatic development. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 222-231.	3.6	63
57	Zebrafish as a new animal model to study lymphangiogenesis. Anatomical Science International, 2009, 84, 102-111.	1.0	51
58	The Control of Vascular Integrity by Endothelial Cell Junctions: Molecular Basis and Pathological Implications. Developmental Cell, 2009, 16, 209-221.	7.0	692
59	Endothelial cells promote migration and proliferation of enteric neural crest cells via \hat{I}^21 integrin signaling. Developmental Biology, 2009, 330, 263-272.	2.0	73
60	Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Developmental Biology, 2008, 318, 258-267.	2.0	60
61	Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. DMM Disease Models and Mechanisms, 2008, 1, 275-281.	2.4	66
62	Big fish in the genome era. Briefings in Functional Genomics & Proteomics, 2008, 7, 411-414.	3.8	3
63	Chapter 4 Using the Zebrafish to Study Vessel Formation. Methods in Enzymology, 2008, 444, 65-97.	1.0	20
64	<i>pak2a</i> mutations cause cerebral hemorrhage in <i>redhead</i> zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13996-14001.	7.1	89
65	Vascular Development in the Zebrafish. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, , 301-332.	0.4	1
66	Imaging the Developing Lymphatic System Using the Zebrafish. Novartis Foundation Symposium, 2007, 283, 139-151.	1.1	5
67	Combinatorial function of ETS transcription factors in the developing vasculature. Developmental Biology, 2007, 303, 772-783.	2.0	202
68	Visualization and experimental analysis of blood vessel formation using transgenic zebrafish. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 286-296.	3.6	29
69	Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC Developmental Biology, 2007, 7, 114.	2.1	128
70	Imaging the developing vasculature in the zebrafish. FASEB Journal, 2007, 21, A202.	0.5	0
71	Live Imaging of Lymphatic Development in the Zebrafish Embryo. FASEB Journal, 2007, 21, A87.	0.5	0
72	Assembly of endothelial tubes. FASEB Journal, 2007, 21, A134.	0.5	0

#	Article	IF	CITATIONS
73	Essential and overlapping roles for laminin \hat{l}_\pm chains in notochord and blood vessel formation. Developmental Biology, 2006, 289, 64-76.	2.0	95
74	Live imaging of lymphatic development in the zebrafish. Nature Medicine, 2006, 12, 711-716.	30.7	441
75	Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006, 442, 453-456.	27.8	485
76	Developmental Vascular Biology Workshop II Abstracts February 1–5, 2006, Asilomar Conference Grounds, Pacific Grove, California. Microcirculation, 2006, 13, 131-172.	1.8	0
77	fused-somites–like mutants exhibit defects in trunk vessel patterning. Developmental Dynamics, 2006, 235, 1753-1760.	1.8	24
78	pak2a Mutations Cause Cerebral Hemorrhage in Redhead Zebrafish Blood, 2006, 108, 142-142.	1.4	1
79	The zebrafish kohtalo/trap230 gene is required for the development of the brain, neural crest, and pronephric kidney. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18473-18478.	7.1	72
80	Vessels and Nerves: Marching to the Same Tune. Cell, 2005, 120, 299-302.	28.9	153
81	Long-Term Time-Lapse Fluorescence Imaging of Developing Zebrafish. Zebrafish, 2005, 2, 113-123.	1.1	55
82	Imaging Blood Vessels in the Zebrafish. Methods in Cell Biology, 2004, 76, 51-74.	1.1	21
83	Something's Fishy in Bethesda: Zebrafish in the NIH Intramural Program. Zebrafish, 2004, 1, 12-20.	1.1	2
84	Making Waves in Madison: The 6th International Meeting on Zebrafish Development and Genetics. Zebrafish, 2004, 1, 145-163.	1.1	1
85	Semaphorin-Plexin Signaling Guides Patterning of the Developing Vasculature. Developmental Cell, 2004, 7, 117-123.	7. O	350
86	Molecular distinction between arteries and veins. Cell and Tissue Research, 2003, 314, 43-59.	2.9	117
87	Fishing for novel angiogenic therapies. British Journal of Pharmacology, 2003, 140, 585-594.	5. 4	34
88	reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Developmental Biology, 2003, 264, 263-274.	2.0	87
89	Angiogenic network formation in the developing vertebrate trunk. Development (Cambridge), 2003, 130, 5281-5290.	2.5	462
90	phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes and Development, 2003, 17, 1346-1351.	5.9	212

#	Article	IF	CITATIONS
91	Self-Association of Gata1 Enhances Transcriptional Activity In Vivo in Zebra Fish Embryos. Molecular and Cellular Biology, 2003, 23, 8295-8305.	2.3	41
92	A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5454-5459.	7.1	148
93	In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Developmental Biology, 2002, 248, 307-318.	2.0	1,917
94	Blood Vessels under Construction. Cell, 2002, 111, 456-458.	28.9	0
95	Plumbing the mysteries of vascular development using the zebrafish. Seminars in Cell and Developmental Biology, 2002, 13, 515-522.	5.0	47
96	sonic hedgehog and vascular endothelial growth factor Act Upstream of the Notch Pathway during Arterial Endothelial Differentiation. Developmental Cell, 2002, 3, 127-136.	7.0	744
97	Vascular cell biology in vivo: a new piscine paradigm?. Trends in Cell Biology, 2002, 12, 439-445.	7.9	64
98	Building the house around the plumbing. BioEssays, 2002, 24, 397-400.	2.5	5
99	Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genetics, 2002, 31, 106-110.	21.4	551
100	Arteries and veins: making a difference with zebrafish. Nature Reviews Genetics, 2002, 3, 674-682.	16.3	248
101	Disruption of <i>acvrl 1 </i> increases endothelial cell number in zebrafish cranial vessels. Development (Cambridge), 2002, 129, 3009-3019.	2.5	325
102	Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development (Cambridge), 2002, 129, 3009-19.	2.5	152
103	The Vascular Anatomy of the Developing Zebrafish: An Atlas of Embryonic and Early Larval Development. Developmental Biology, 2001, 230, 278-301.	2.0	801
104	Isolation and expression analysis of three zebrafish angiopoietin genes. Developmental Dynamics, 2001, 221, 470-474.	1.8	49
105	Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development (Cambridge), 2001, 128, 3675-3683.	2.5	768
106	Universal GFP reporter for the study of vascular development. Genesis, 2000, 28, 75-81.	1.6	424
107	Building the vertebrate vasculature: research is going swimmingly. BioEssays, 2000, 22, 882-893.	2.5	51
108	Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Current Biology, 2000, 10, 1001-1004.	3.9	95

#	Article	IF	Citations
109	Studying Vascular Development in the Zebrafish. Trends in Cardiovascular Medicine, 2000, 10, 352-360.	4.9	37
110	Isolation, characterization, expression and functional analysis of the zebrafish ortholog of MEN1. Mammalian Genome, 2000, 11, 448-454.	2.2	37
111	Zebrafish homolog of the leukemia gene CBFB: its expression during embryogenesis and its relationship to scland gata-1 in hematopoiesis. Blood, 2000, 96, 4178-4184.	1.4	38
112	gridlock, an HLH Gene Required for Assembly of the Aorta in Zebrafish. Science, 2000, 287, 1820-1824.	12.6	398
113	Building the vertebrate vasculature: research is going swimmingly. BioEssays, 2000, 22, 882-893.	2.5	2
114	Non-Radioisotopic AFLP Method Using PCR Primers Fluorescently Labeled with Cyâ,,¢5. BioTechniques, 1999, 26, 236-238.	1.8	13
115	What guides early embryonic blood vessel formation?. Developmental Dynamics, 1999, 215, 2-11.	1.8	95
116	What guides early embryonic blood vessel formation?. Developmental Dynamics, 1999, 215, 2-11.	1.8	2
117	Characterization of two frizzled8 homologues expressed in the embryonic shield and prechordal plate of zebrafish embryos1The entire nucleotide sequences for Zfz8a and Zfz8b cDNA were deposited to the GenBank database under the Accession numbers AF060697 and AF060696, respectively.1. Mechanisms of Development, 1998, 78, 193-198.	1.7	32
118	Vessel Patterning in the Embryo of the Zebrafish: Guidance by Notochord. Developmental Biology, 1997, 183, 37-48.	2.0	284
119	gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Medicine, $1995,1,1143$ -1147.	30.7	301