
Brant M Weinstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9161872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Developmental Biology, 2002, 248, 307-318.	2.0	1,917
2	The Vascular Anatomy of the Developing Zebrafish: An Atlas of Embryonic and Early Larval Development. Developmental Biology, 2001, 230, 278-301.	2.0	801
3	Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development (Cambridge), 2001, 128, 3675-3683.	2.5	768
4	sonic hedgehog and vascular endothelial growth factor Act Upstream of the Notch Pathway during Arterial Endothelial Differentiation. Developmental Cell, 2002, 3, 127-136.	7.0	744
5	The Control of Vascular Integrity by Endothelial Cell Junctions: Molecular Basis and Pathological Implications. Developmental Cell, 2009, 16, 209-221.	7.0	692
6	Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genetics, 2002, 31, 106-110.	21.4	551
7	Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006, 442, 453-456.	27.8	485
8	Angiogenic network formation in the developing vertebrate trunk. Development (Cambridge), 2003, 130, 5281-5290.	2.5	462
9	Live imaging of lymphatic development in the zebrafish. Nature Medicine, 2006, 12, 711-716.	30.7	441
10	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	7.2	429
11	Universal GFP reporter for the study of vascular development. Genesis, 2000, 28, 75-81.	1.6	424
12	gridlock, an HLH Gene Required for Assembly of the Aorta in Zebrafish. Science, 2000, 287, 1820-1824.	12.6	398
13	Arterial–Venous Specification During Development. Circulation Research, 2009, 104, 576-588.	4.5	365
14	Semaphorin-Plexin Signaling Guides Patterning of the Developing Vasculature. Developmental Cell, 2004, 7, 117-123.	7.0	350
15	Disruption of <i>acvrl1</i> increases endothelial cell number in zebrafish cranial vessels. Development (Cambridge), 2002, 129, 3009-3019.	2.5	325
16	gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Medicine, 1995, 1, 1143-1147.	30.7	301
17	Vessel Patterning in the Embryo of the Zebrafish: Guidance by Notochord. Developmental Biology, 1997, 183, 37-48.	2.0	284
18	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	3.5	255

2

#	Article	IF	CITATIONS
19	Arteries and veins: making a difference with zebrafish. Nature Reviews Genetics, 2002, 3, 674-682.	16.3	248
20	Vascular Development in the Zebrafish. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006684-a006684.	6.2	216
21	phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes and Development, 2003, 17, 1346-1351.	5.9	212
22	Combinatorial function of ETS transcription factors in the developing vasculature. Developmental Biology, 2007, 303, 772-783.	2.0	202
23	Vessels and Nerves: Marching to the Same Tune. Cell, 2005, 120, 299-302.	28.9	153
24	Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development (Cambridge), 2002, 129, 3009-19.	2.5	152
25	A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proceedings of the United States of America, 2002, 99, 5454-5459.	7.1	148
26	ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nature Medicine, 2019, 25, 1116-1122.	30.7	136
27	The zebrafish: A fintastic model for hematopoietic development and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e312.	5.9	134
28	Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC Developmental Biology, 2007, 7, 114.	2.1	128
29	Chemokine Signaling Directs Trunk Lymphatic Network Formation along the Preexisting Blood Vasculature. Developmental Cell, 2012, 22, 824-836.	7.0	119
30	Molecular distinction between arteries and veins. Cell and Tissue Research, 2003, 314, 43-59.	2.9	117
31	Assembly and patterning of the vascular network of the vertebrate hindbrain. Development (Cambridge), 2011, 138, 1705-1715.	2.5	113
32	Loss of BRCC3 Deubiquitinating Enzyme Leads to Abnormal Angiogenesis and Is Associated with Syndromic Moyamoya. American Journal of Human Genetics, 2011, 88, 718-728.	6.2	109
33	ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nature Medicine, 2012, 18, 967-973.	30.7	105
34	What guides early embryonic blood vessel formation?. Developmental Dynamics, 1999, 215, 2-11.	1.8	95
35	Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Current Biology, 2000, 10, 1001-1004.	3.9	95
36	Essential and overlapping roles for laminin α chains in notochord and blood vessel formation. Developmental Biology, 2006, 289, 64-76.	2.0	95

#	Article	IF	CITATIONS
37	Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3. Development (Cambridge), 2011, 138, 4875-4886.	2.5	95
38	<i>pak2a</i> mutations cause cerebral hemorrhage in <i>redhead</i> zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13996-14001.	7.1	89
39	reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Developmental Biology, 2003, 264, 263-274.	2.0	87
40	Mural-Endothelial cell-cell interactions stabilize the developing zebrafish dorsal aorta. Development (Cambridge), 2017, 144, 115-127.	2.5	84
41	An epigenetic mechanism for cavefish eye degeneration. Nature Ecology and Evolution, 2018, 2, 1155-1160.	7.8	78
42	A novel perivascular cell population in the zebrafish brain. ELife, 2017, 6, .	6.0	77
43	Development of multilineage adult hematopoiesis in the zebrafish with a runx1 truncation mutation. Blood, 2010, 115, 2806-2809.	1.4	76
44	Endothelial cells promote migration and proliferation of enteric neural crest cells via β1 integrin signaling. Developmental Biology, 2009, 330, 263-272.	2.0	73
45	The zebrafish kohtalo/trap230 gene is required for the development of the brain, neural crest, and pronephric kidney. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18473-18478.	7.1	72
46	Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. DMM Disease Models and Mechanisms, 2008, 1, 275-281.	2.4	66
47	Vascular cell biology in vivo: a new piscine paradigm?. Trends in Cell Biology, 2002, 12, 439-445.	7.9	64
48	The Effect of Stocking Densities on Reproductive Performance in Laboratory Zebrafish (<i>Danio) Tj ETQq0 0 0</i>	rgB <u>T</u> .∕Ove	rlock 10 Tf 50
49	Lymphatic development. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 222-231.	3.6	63
50	Common Factors Regulating Patterning of the Nervous and Vascular Systems*. Annual Review of Cell and Developmental Biology, 2010, 26, 639-665.	9.4	62
51	Development of the larval lymphatic system in the zebrafish. Development (Cambridge), 2017, 144, 2070-2081.	2.5	62
52	Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Developmental Biology, 2008, 318, 258-267.	2.0	60
53	Long-Term Time-Lapse Fluorescence Imaging of Developing Zebrafish. Zebrafish, 2005, 2, 113-123.	1.1	55
54	Endothelial Cilia Are Essential for Developmental Vascular Integrity in Zebrafish. Journal of the American Society of Nephrology: JASN, 2015, 26, 864-875.	6.1	53

#	Article	IF	CITATIONS
55	Building the vertebrate vasculature: research is going swimmingly. BioEssays, 2000, 22, 882-893.	2.5	51
56	Zebrafish as a new animal model to study lymphangiogenesis. Anatomical Science International, 2009, 84, 102-111.	1.0	51
57	CBFβ and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish. Blood, 2014, 124, 70-78.	1.4	50
58	lsolation and expression analysis of three zebrafish angiopoietin genes. Developmental Dynamics, 2001, 221, 470-474.	1.8	49
59	SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish. Developmental Biology, 2014, 390, 116-125.	2.0	48
60	Single cell analysis of endothelial morphogenesis <i>in vivo</i> . Development (Cambridge), 2015, 142, 2951-61.	2.5	48
61	Plumbing the mysteries of vascular development using the zebrafish. Seminars in Cell and Developmental Biology, 2002, 13, 515-522.	5.0	47
62	Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development (Cambridge), 2015, 143, 147-59.	2.5	47
63	Imaging Blood Vessels in the Zebrafish. Methods in Cell Biology, 2010, 100, 27-54.	1.1	46
64	Wnt9a Is Required for the Aortic Amplification of Nascent Hematopoietic Stem Cells. Cell Reports, 2016, 17, 1595-1606.	6.4	46
65	Self-Association of Gata1 Enhances Transcriptional Activity In Vivo in Zebra Fish Embryos. Molecular and Cellular Biology, 2003, 23, 8295-8305.	2.3	41
66	Motoneurons are essential for vascular pathfinding. Development (Cambridge), 2011, 138, 3847-3857.	2.5	41
67	Temporal-specific roles of Rac1 during vascular development and retinal angiogenesis. Developmental Biology, 2016, 411, 183-194.	2.0	40
68	Live Imaging of Intracranial Lymphatics in the Zebrafish. Circulation Research, 2021, 128, 42-58.	4.5	39
69	Zebrafish homolog of the leukemia gene CBFB: its expression during embryogenesis and its relationship to scland gata-1 in hematopoiesis. Blood, 2000, 96, 4178-4184.	1.4	38
70	CDP-diacylglycerol synthetase-controlled phosphoinositide availability limits VEGFA signaling and vascular morphogenesis. Blood, 2012, 120, 489-498.	1.4	38
71	Studying Vascular Development in the Zebrafish. Trends in Cardiovascular Medicine, 2000, 10, 352-360.	4.9	37
72	lsolation, characterization, expression and functional analysis of the zebrafish ortholog of MEN1. Mammalian Genome, 2000, 11, 448-454.	2.2	37

#	Article	IF	CITATIONS
73	T Cell Immune Deficiency in <i>zap70</i> Mutant Zebrafish. Molecular and Cellular Biology, 2016, 36, 2868-2876.	2.3	37
74	Epigenetic regulation of hematopoiesis by DNA methylation. ELife, 2016, 5, e11813.	6.0	36
75	Fishing for novel angiogenic therapies. British Journal of Pharmacology, 2003, 140, 585-594.	5.4	34
76	Characterization of two frizzled8 homologues expressed in the embryonic shield and prechordal plate of zebrafish embryos1The entire nucleotide sequences for Zfz8a and Zfz8b cDNA were deposited to the GenBank database under the Accession numbers AF060697 and AF060696, respectively.1. Mechanisms of Development, 1998, 78, 193-198.	1.7	32
77	The role of <i>Hath6</i> , a novel shear stress-responsive transcription factor, in endothelial differentiation and function modulation. Journal of Cell Science, 2014, 127, 1428-40.	2.0	31
78	Chemokine mediated signalling within arteries promotes vascular smooth muscle cell recruitment. Communications Biology, 2020, 3, 734.	4.4	30
79	Visualization and experimental analysis of blood vessel formation using transgenic zebrafish. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 286-296.	3.6	29
80	Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 655-662.	2.4	27
81	Building the drains: the lymphatic vasculature in health and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 689-710.	5.9	26
82	Growth Differentiation Factor 6 Promotes Vascular Stability by Restraining Vascular Endothelial Growth Factor Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 353-362.	2.4	25
83	fused-somites–like mutants exhibit defects in trunk vessel patterning. Developmental Dynamics, 2006, 235, 1753-1760.	1.8	24
84	Loss of GATA1 and gain of FLI1 expression during thrombocyte maturation. Blood Cells, Molecules, and Diseases, 2010, 44, 175-180.	1.4	24
85	Imaging Blood Vessels in the Zebrafish. Methods in Cell Biology, 2004, 76, 51-74.	1.1	21
86	Chapter 4 Using the Zebrafish to Study Vessel Formation. Methods in Enzymology, 2008, 444, 65-97.	1.0	20
87	To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis, 2021, 24, 251-269.	7.2	19
88	Zebrafish as a Model for Hemorrhagic Stroke. Methods in Cell Biology, 2011, 105, 137-161.	1.1	18
89	Emerging from the PAC: Studying zebrafish lymphatic development. Microvascular Research, 2014, 96, 23-30.	2.5	18
90	DNA methylation in hematopoietic development and disease. Experimental Hematology, 2016, 44, 783-790.	0.4	18

#	Article	IF	CITATIONS
91	A hypomorphic cystathionine ß-synthase gene contributes to cavefish eye loss by disrupting optic vasculature. Nature Communications, 2020, 11, 2772.	12.8	18
92	Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling. Nature Communications, 2020, 11, 1204.	12.8	16
93	MicroRNA-mediated control of developmental lymphangiogenesis. ELife, 2019, 8, .	6.0	15
94	Non-Radioisotopic AFLP Method Using PCR Primers Fluorescently Labeled with Cyâ,,¢5. BioTechniques, 1999, 26, 236-238.	1.8	13
95	Use of PCR Template-Derived Probes Prevents Off-Target Whole Mount <i>In Situ</i> Hybridization in Transgenic Zebrafish. Zebrafish, 2012, 9, 85-89.	1.1	9
96	Long-term imaging of living adult zebrafish. Development (Cambridge), 2022, 149, .	2.5	8
97	Maternal control of visceral asymmetry evolution in Astyanax cavefish. Scientific Reports, 2021, 11, 10312.	3.3	7
98	Anatomy and development of the pectoral fin vascular network in the zebrafish. Development (Cambridge), 2022, 149, .	2.5	6
99	Building the house around the plumbing. BioEssays, 2002, 24, 397-400.	2.5	5
100	Imaging the Developing Lymphatic System Using the Zebrafish. Novartis Foundation Symposium, 2007, 283, 139-151.	1.1	5
101	Advantages and Challenges of Cardiovascular and Lymphatic Studies in Zebrafish Research. Frontiers in Cell and Developmental Biology, 2019, 7, 89.	3.7	5
102	In vivo dissection of Rhoa function in vascular development using zebrafish. Angiogenesis, 2022, 25, 411-434.	7.2	5
103	Rapid Generation of Pigment Free, Immobile Zebrafish Embryos and Larvae in Any Genetic Background Using CRISPR-Cas9 dgRNPs. Zebrafish, 2021, 18, 235-242.	1.1	4
104	Big fish in the genome era. Briefings in Functional Genomics & Proteomics, 2008, 7, 411-414.	3.8	3
105	Something's Fishy in Bethesda: Zebrafish in the NIH Intramural Program. Zebrafish, 2004, 1, 12-20.	1.1	2
106	The Zebrafish Cardiovascular System. , 2020, , 131-143.		2
107	What guides early embryonic blood vessel formation?. Developmental Dynamics, 1999, 215, 2-11.	1.8	2
108	Building the vertebrate vasculature: research is going swimmingly. BioEssays, 2000, 22, 882-893.	2.5	2

#	Article	IF	CITATIONS
109	Assessment of Vascular Patterning in the Zebrafish. Methods in Molecular Biology, 2021, 2206, 205-222.	0.9	2
110	Making Waves in Madison: The 6th International Meeting on Zebrafish Development and Genetics. Zebrafish, 2004, 1, 145-163.	1.1	1
111	Vascular Development in the Zebrafish. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, , 301-332.	0.4	1
112	Blood Vessel Formation. , 2015, , 421-449.		1
113	pak2a Mutations Cause Cerebral Hemorrhage in Redhead Zebrafish Blood, 2006, 108, 142-142.	1.4	1
114	Blood Vessels under Construction. Cell, 2002, 111, 456-458.	28.9	0
115	Developmental Vascular Biology Workshop II Abstracts February 1–5, 2006, Asilomar Conference Grounds, Pacific Grove, California. Microcirculation, 2006, 13, 131-172.	1.8	0
116	Imaging the developing vasculature in the zebrafish. FASEB Journal, 2007, 21, A202.	0.5	0
117	Live Imaging of Lymphatic Development in the Zebrafish Embryo. FASEB Journal, 2007, 21, A87.	0.5	0
118	Assembly of endothelial tubes. FASEB Journal, 2007, 21, A134.	0.5	0
119	Zebrafish Cbfb Is Required For The Mobilization, But Not The Emergence, Of Hematopoietic Stem Cells In Embryos. Blood, 2013, 122, 464-464.	1.4	0