

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9160963/publications.pdf Version: 2024-02-01

Li Vu

#	Article	IF	CITATIONS
1	Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating. Nanoscale Research Letters, 2017, 12, 1.	3.1	626
2	Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Optics Express, 2017, 25, 3525.	1.7	108
3	Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons. Nanoscale Research Letters, 2018, 13, 143.	3.1	98
4	Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region. Nanoscale Research Letters, 2017, 12, 427.	3.1	84
5	Sharp Asymmetric Line Shapes in a Plasmonic Waveguide System and its Application in Nanosensor. Journal of Lightwave Technology, 2015, 33, 3250-3253.	2.7	65
6	Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Optics Express, 2016, 24, 15351.	1.7	63
7	Sharp Trapped Resonances by Exciting the Anti-symmetric Waveguide Mode in a Metal-Insulator-Metal Resonator. Plasmonics, 2015, 10, 131-137.	1.8	62
8	Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System. Plasmonics, 2015, 10, 721-727.	1.8	56
9	Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Scientific Reports, 2017, 7, 45210.	1.6	53
10	Efficient Polarization Beam Splitter Based on All-Dielectric Metasurface in Visible Region. Nanoscale Research Letters, 2019, 14, 34.	3.1	38
11	Strong Light–Matter Interactions in Chiral Plasmonic–Excitonic Systems Assembled on DNA Origami. Nano Letters, 2021, 21, 3573-3580.	4.5	38
12	Plexcitonic Optical Chirality: Strong Exciton–Plasmon Coupling in Chiral J-Aggregate-Metal Nanoparticle Complexes. ACS Nano, 2021, 15, 2292-2300.	7.3	38
13	Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Advances, 2018, 8, 21054-21064.	1.7	35
14	Numerical Study of the Wideâ€angle Polarizationâ€Independent Ultraâ€Broadband Efficient Selective Solar Absorber in the Entire Solar Spectrum. Solar Rrl, 2017, 1, 1700049.	3.1	32
15	Independently Tunable Ultrasharp Double Fano Resonances in Coupled Plasmonic Resonator System. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	28
16	Side-Coupled Cavity-Induced Fano Resonance and Its Application in Nanosensor. Plasmonics, 2016, 11, 307-313.	1.8	27
17	Multiple Fano Resonances Based on Plasmonic Resonator System With End-Coupled Cavities for High-Performance Nanosensor. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	26
18	Shape Complementarity Modulated Self-Assembly of Nanoring and Nanosphere Hetero-nanostructures. Journal of the American Chemical Society, 2020, 142, 11680-11684.	6.6	26

Lı Yu

#	Article	IF	CITATIONS
19	Tunable Multi-Fano Resonances in MDM-Based Side-Coupled Resonator System and its Application in Nanosensor. Plasmonics, 2017, 12, 1665-1672.	1.8	24
20	Independently Formed Multiple Fano Resonances for Ultra-High Sensitivity Plasmonic Nanosensor. Plasmonics, 2018, 13, 107-113.	1.8	24
21	Polarization Splitter with Optical Bistability in Metal Gap Waveguide Nanocavities. Plasmonics, 2013, 8, 943-947.	1.8	22
22	Multifunctional logic gates based on silicon hybrid plasmonic waveguides. Modern Physics Letters B, 2018, 32, 1850008.	1.0	21
23	Ultra-high Sensitivity Plasmonic Nanosensor Based on Multiple Fano Resonance in the MDM Side-Coupled Cavities. Plasmonics, 2017, 12, 1099-1105.	1.8	18
24	Ultrasharp Fano Resonances Based on the Circular Cavity Optimized by a Metallic Nanodisk. IEEE Photonics Journal, 2016, 8, 1-8.	1.0	17
25	Optical Chirality in a Strong Coupling System with Surface Plasmons Polaritons and Chiral Emitters. ACS Photonics, 2021, 8, 901-906.	3.2	17
26	Strong plasmon–exciton coupling in bimetallic nanorings and nanocuboids. Journal of Materials Chemistry C, 2020, 8, 7672-7678.	2.7	14
27	Optical bistability of surface plasmon polaritons in nonlinear Kretschmann configuration. Journal of Modern Optics, 2013, 60, 190-196.	0.6	13
28	Directional Modulation of Fluorescence by Nanowireâ€Based Optical Traveling Wave Antennas. Advanced Optical Materials, 2019, 7, 1801362.	3.6	13
29	Numerical Study of an Efficient Solar Absorber Consisting of Metal Nanoparticles. Nanoscale Research Letters, 2017, 12, 601.	3.1	12
30	Strong Coupling between a Quasi-single Molecule and a Plasmonic Cavity in the Trapping System. Nanoscale Research Letters, 2019, 14, 74.	3.1	9
31	Broadband Ultrathin Transmission Quarter Waveplate with Rectangular Hole Array Based on Plasmonic Resonances. Nanoscale Research Letters, 2019, 14, 384.	3.1	9
32	Directional Optical Travelling Wave Antenna Based on Surface Plasmon Transmission Line. Laser and Photonics Reviews, 2018, 12, 1700073.	4.4	7
33	Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas. Nanophotonics, 2019, 8, 1271-1278.	2.9	6
34	Loaded Slot Cavity Induced Sensing Enhancement and Transparency Based on Plasmonic Structure. IEEE Sensors Journal, 2022, 22, 14044-14050.	2.4	5
35	Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal–insulator–metal waveguide. Journal of Modern Optics, 2013, 60, 1217-1222.	0.6	4
36	Strong Coupling in the Structure of Single Metallic Nanoparticle Partially Buried in Molecular J-Aggregates. Plasmonics, 2018, 13, 743-747.	1.8	4

Lı Yu

#	Article	IF	CITATIONS
37	Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles. Nanoscale, 2021, 13, 15812-15818.	2.8	4
38	Dynamic Control of Quantum Emitters Strongly Coupled to the Isolated Plasmon Cavity by the Microfluidic Device. Journal of Physical Chemistry C, 2021, 125, 17303-17310.	1.5	3
39	Optical bistability based on surface plasmon coupled between two noble metal films involving Kerr materials. Science China: Physics, Mechanics and Astronomy, 2013, 56, 680-684.	2.0	2
40	Effect of ridge morphologies on surface plasmon scattering by subwavelength surface ridges. Journal of Modern Optics, 2013, 60, 350-354.	0.6	2
41	Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling. Nanoscale Research Letters, 2018, 13, 144.	3.1	2
42	Tunable tilt of the field induced by anisotropic material in a plasmonic waveguide and its application to logic gates. Optics Communications, 2019, 452, 334-341.	1.0	2
43	Anisotropic-Material-Induced Rotation of Field Distribution in Circular Plasmonic Resonator. IEEE Photonics Journal, 2019, 11, 1-9.	1.0	2
44	On-chip unidirectional micro-nano-light sources based on multi-mode cesium lead halide perovskite nanowires. Applied Physics Letters, 2021, 119, .	1.5	2
45	Research on transmission characteristics of side-coupled rectangular-ring resonator. Modern Physics Letters B, 2016, 30, 1650374.	1.0	1
46	Active Control of Slow Light in a Gain-Assisted Plasmon-Induced Transparency Structure. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	1
47	Ultra-unidirectional Emission with Enhanced Spectral Splitting Based on Plasmonic Nano-pillars and its Metasurface. Plasmonics, 2022, 17, 1463-1469.	1.8	1
48	Tunable beam focusing based on optical bistability with a composite Kretschmann configuration involving a Kerr medium. Journal of Modern Optics, 2013, 60, 1588-1592.	0.6	0
49	Enhanced transmission through periodic arrays of sub-wavelength holes with different media. Journal of Modern Optics, 2013, 60, 551-555.	0.6	0
50	Polarization-dependent plasmon mode mapping of Ag nanowires based on two-photon excitation fluorescence of quantum dots. Applied Physics Letters, 2017, 110, 153107.	1.5	0
51	Ultrasmall Mode Volumes of Multilayered Hyperbolic Metamaterial Nanocavities in the Visible Range. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	0
52	Bi-Directional Faraday Rotation Selective Enhancement on Embedded Nano-Gratings. IEEE Photonics Technology Letters, 2017, 29, 1615-1618.	1.3	0
53	A Semiclassical Model for Plasmon-Exciton Interaction From Weak to Strong Coupling Regime. IEEE Photonics Journal, 2021, 13, 1-10.	1.0	0
54	Highly tunable directional optical antennas with large local angular chiroptical effects. Journal of Applied Physics, 2022, 131, 033103.	1.1	0