Nicole G H Leferink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9160889/publications.pdf

Version: 2024-02-01

29 papers 1,183

20 h-index 477307 29 g-index

29 all docs

29 docs citations

29 times ranked 1505 citing authors

#	Article	IF	Citations
1	Predictive Engineering of Class I Terpene Synthases Using Experimental and Computational Approaches. ChemBioChem, 2022, 23, .	2.6	12
2	Molecular Determinants of Carbocation Cyclisation in Bacterial Monoterpene Synthases. ChemBioChem, 2022, 23, .	2.6	5
3	Isopentenol Utilization Pathway for the Production of Linalool in <i>Escherichia coli</i> Using an Improved Bacterial Linalool/Nerolidol Synthase. ChemBioChem, 2021, 22, 2325-2334.	2.6	28
4	Taming the Reactivity of Monoterpene Synthases To Guide Regioselective Product Hydroxylation. ChemBioChem, 2020, 21, 985-990.	2.6	13
5	Exploring novel bacterial terpene synthases. PLoS ONE, 2020, 15, e0232220.	2.5	30
6	An automated pipeline for the screening of diverse monoterpene synthase libraries. Scientific Reports, 2019, 9, 11936.	3.3	21
7	Chemo-enzymatic routes towards the synthesis of bio-based monomers and polymers. Molecular Catalysis, 2019, 467, 95-110.	2.0	30
8	Experiment and Simulation Reveal How Mutations in Functional Plasticity Regions Guide Plant Monoterpene Synthase Product Outcome. ACS Catalysis, 2018, 8, 3780-3791.	11.2	32
9	Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase. ACS Catalysis, 2017, 7, 6268-6282.	11.2	47
10	Correlating Calmodulin Landscapes with Chemical Catalysis in Neuronal Nitric Oxide Synthase using Time-Resolved FRET and a 5-Deazaflavin Thermodynamic Trap. ACS Catalysis, 2016, 6, 5170-5180.	11.2	15
11	A †Plug and Play' Platform for the Production of Diverse Monoterpene Hydrocarbon Scaffolds in <i>Escherichia coli ⟨i⟩ ChemistrySelect, 2016, 1, 1893-1896.</i>	1.5	42
12	Towards the free energy landscape for catalysis in mammalian nitric oxide synthases. FEBS Journal, 2015, 282, 3016-3029.	4.7	23
13	Energy Landscapes and Catalysis in Nitric-oxide Synthase. Journal of Biological Chemistry, 2014, 289, 11725-11738.	3.4	25
14	Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase. Nature Communications, 2014, 5, 4395.	12.8	36
15	Aldonolactone Oxidoreductases. Methods in Molecular Biology, 2014, 1146, 95-111.	0.9	2
16	Communication between <scp>L</scp> –galactono–1,4–lactone dehydrogenase and cytochrome <i>c</i> . FEBS Journal, 2013, 280, 1830-1840.	4.7	19
17	Gating mechanisms for biological electron transfer: Integrating structure with biophysics reveals the nature of redox control in cytochrome P450 reductase and copperâ€dependent nitrite reductase. FEBS Letters, 2012, 586, 578-584.	2.8	31
18	Laserâ€flash photolysis indicates that internal electron transfer is triggered by proton uptake by <i>Alcaligenesâ€∫xylosoxidans</i> copperâ€dependent nitrite reductase. FEBS Journal, 2012, 279, 2174-2181.	4.7	24

#	Article	IF	CITATION
19	Proton-Coupled Electron Transfer in the Catalytic Cycle of <i>Alcaligenes xylosoxidans</i> Copper-Dependent Nitrite Reductase. Biochemistry, 2011, 50, 4121-4131.	2.5	64
20	Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 545-552.	2.3	14
21	3DM: Systematic analysis of heterogeneous superfamily data to discover protein functionalities. Proteins: Structure, Function and Bioinformatics, 2010, 78, NA-NA.	2.6	115
22	Identification of a Gatekeeper Residue That Prevents Dehydrogenases from Acting as Oxidases. Journal of Biological Chemistry, 2009, 284, 4392-4397.	3.4	83
23	Galactonolactone Dehydrogenase Requires a Redox-Sensitive Thiol for Optimal Production of Vitamin C. Plant Physiology, 2009, 150, 596-605.	4.8	58
24	Functional assignment of Glu386 and Arg388 in the active site of ⟨scp⟩l⟨/scp⟩â€galactonoâ€Î³â€lactone dehydrogenase. FEBS Letters, 2009, 583, 3199-3203.	2.8	20
25	Correlated mutation analyses on superâ€family alignments reveal functionally important residues. Proteins: Structure, Function and Bioinformatics, 2009, 76, 608-616.	2.6	77
26	Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures. Extremophiles, 2008, 12, 587-594.	2.3	37
27	<scp> </scp> â€Galactonoâ€Î³â€lactone dehydrogenase from <i>Arabidopsisâ€∫thaliana</i> , a flavoprotein involved in vitaminâ€∫C biosynthesis. FEBS Journal, 2008, 275, 713-726.	4.7	86
28	The growing VAO flavoprotein family. Archives of Biochemistry and Biophysics, 2008, 474, 292-301.	3.0	107
29	Occurrence and Biocatalytic Potential of Carbohydrate Oxidases. Advances in Applied Microbiology, 2006, 60, 17-54.	2.4	87