
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9160767/publications.pdf Version: 2024-02-01

KIM A VENN

#	Article	IF	CITATIONS
1	Stellar Chemical Signatures and Hierarchical Galaxy Formation. Astronomical Journal, 2004, 128, 1177-1195.	4.7	634
2	VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios. Astronomical Journal, 2003, 125, 684-706.	4.7	419
3	Two Distinct Ancient Components in the Sculptor Dwarf Spheroidal Galaxy: First Results from the Dwarf Abundances and Radial Velocities Team. Astrophysical Journal, 2004, 617, L119-L122.	4.5	299
4	VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. II. Implications for Understanding Galaxy Evolution. Astronomical Journal, 2003, 125, 707-726.	4.7	222
5	A Comparison of Elemental Abundance Ratios in Globular Clusters, Field Stars, and Dwarf Spheroidal Galaxies. Astronomical Journal, 2005, 130, 2140-2165.	4.7	219
6	The chemical composition of three Lambda Bootis stars. Astrophysical Journal, 1990, 363, 234.	4.5	182
7	The NIR CaÂii triplet at low metallicity. Astronomy and Astrophysics, 2010, 513, A34.	5.1	179
8	A New View of the Dwarf Spheroidal Satellites of the Milky Way from VLT FLAMES: Where Are the Very Metal-poor Stars?. Astrophysical Journal, 2006, 651, L121-L124.	4.5	178
9	TheSpitzerSurvey of the Small Magellanic Cloud: S3MC Imaging and Photometry in the Mid―and Farâ€Infrared Wave Bands. Astrophysical Journal, 2007, 655, 212-232.	4.5	176
10	Aâ€īype Supergiant Abundances in the Small Magellanic Cloud: Probes of Evolution. Astrophysical Journal, 1999, 518, 405-421.	4.5	160
11	The Pristine survey – I. Mining the Galaxy for the most metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2587-2604.	4.4	156
12	Binarity in carbon-enhanced metal-poor starsâ~ Monthly Notices of the Royal Astronomical Society, 2014, 441, 1217-1229.	4.4	135
13	NUCLEOSYNTHESIS AND THE INHOMOGENEOUS CHEMICAL EVOLUTION OF THE CARINA DWARF GALAXY. Astrophysical Journal, 2012, 751, 102.	4.5	127
14	First Stellar Abundances in NGC 6822 from VLTâ€UVES and Keckâ€HIRES Spectroscopy. Astrophysical Journal, 2001, 547, 765-776.	4.5	109
15	Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy. Astronomy and Astrophysics, 2009, 502, 569-578.	5.1	92
16	THE RESOLVED STRUCTURE AND DYNAMICS OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM. Astrophysical Journal, 2012, 750, 33.	4.5	91
17	The R-Process Alliance: First Release from the Northern Search for r-process-enhanced Metal-poor Stars in the Galactic Halo. Astrophysical Journal, 2018, 868, 110.	4.5	88
18	IRC +10420 - A cool hypergiant near the top of the H-R diagram. Astrophysical Journal, 1993, 411, 323.	4.5	85

#	Article	IF	CITATIONS
19	Rotational Velocities for B0-B3 Stars in Seven Young Clusters: Further Study of the Relationship between Rotation Speed and Density in Star-Forming Regions. Astronomical Journal, 2007, 133, 1092-1103.	4.7	83
20	Atmospheric Parameters and LTE Abundances for 22 Galactic, A-Type Supergiants. Astrophysical Journal, Supplement Series, 1995, 99, 659.	7.7	81
21	Tracing the formation of the Milky Way through ultra metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2166-2180.	4.4	73
22	THE COMPARATIVE CHEMICAL EVOLUTION OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM. Astrophysical Journal, 2013, 767, 131.	4.5	72
23	The Spatial Homogeneity of Nebular and Stellar Oxygen Abundances in the Local Group Dwarf Irregular Galaxy NGC 6822. Astrophysical Journal, 2006, 642, 813-833.	4.5	71
24	An application of deep learning in the analysis of stellar spectra. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2978-2993.	4.4	71
25	CNO Abundances and the Evolutionary Status of Galactic, A-Type Supergiants. Astrophysical Journal, 1995, 449, 839.	4.5	71
26	The Impact of Modeling Assumptions in Galactic Chemical Evolution Models. Astrophysical Journal, 2017, 835, 128.	4.5	70
27	The Araucaria Project: VLT Spectra of Blue Supergiants in WLM— Classification and First Abundances. Astrophysical Journal, 2006, 648, 1007-1019.	4.5	70
28	Chemical Abundances in the Ultra-faint Dwarf Galaxies Grus I and Triangulum II: Neutron-capture Elements as a Defining Feature of the Faintest Dwarfs*. Astrophysical Journal, 2019, 870, 83.	4.5	66
29	Analysis of Four A–F Supergiants in M31 from Keck HIRES Spectroscopy. Astrophysical Journal, 2000, 541, 610-623.	4.5	66
30	The present-day chemical composition of the SMC from UVES spectra of the sharp-lined, B-type dwarf AVÂ304. Astronomy and Astrophysics, 2003, 400, 21-30.	5.1	65
31	The early days of the Sculptor dwarf spheroidal galaxy. Astronomy and Astrophysics, 2015, 583, A67.	5.1	64
32	The Chemical Composition of Two Supergiants in the Dwarf Irregular Galaxy WLM. Astronomical Journal, 2003, 126, 1326-1345.	4.7	63
33	A HIGH-RESOLUTION SPECTROSCOPIC SEARCH FOR THE REMAINING DONOR FOR TYCHO'S SUPERNOVA. Astrophysical Journal, 2013, 774, 99.	4.5	62
34	The Canada–France Imaging Survey: First Results from the u-Band Component. Astrophysical Journal, 2017, 848, 128.	4.5	62
35	First Stellar Abundances in the Dwarf Irregular Galaxy Sextans A. Astronomical Journal, 2004, 127, 2723-2737.	4.7	61
36	Pristine dwarf galaxy survey – I. A detailed photometric and spectroscopic study of the very metal-poor Draco II satellite. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2609-2627.	4.4	60

#	Article	IF	CITATIONS
37	VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy. Astronomy and Astrophysics, 2014, 572, A88.	5.1	59
38	On Spectral Line Formation and Measurement in Cepheids: Implications to Distance Determination. Astrophysical Journal, 1995, 446, 250.	4.5	58
39	Revised and New Proper Motions for Confirmed and Candidate Milky Way Dwarf Galaxies. Astronomical Journal, 2020, 160, 124.	4.7	56
40	The Pristine survey – VI. The first three years of medium-resolution follow-up spectroscopy of Pristine EMP star candidates. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2241-2253.	4.4	51
41	Investigating the Possible Anomaly between Nebular and Stellar Oxygen Abundances in the Dwarf Irregular Galaxy WLM. Astrophysical Journal, 2005, 620, 223-237.	4.5	50
42	The Pristine survey IV: approaching the Galactic metallicity floor with the discovery of an ultra-metal-poor star. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3838-3852.	4.4	50
43	Chemo-dynamics of outer halo dwarf stars, including <i>Gaia</i> -Sausage and <i>Gaia</i> -Sequoia candidates. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1236-1255.	4.4	48
44	Boron Abundances in Bâ€Type Stars: A Test of Rotational Depletion during Mainâ€ S equence Evolution. Astrophysical Journal, 2002, 565, 571-586.	4.5	47
45	GRACES observations of young $[\hat{1}\pm/Fe]$ -rich stars. Monthly Notices of the Royal Astronomical Society, 2016, 459, 487-495.	4.4	46
46	The Pristine survey – X. A large population of low-metallicity stars permeates the Galactic disc. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 497, L7-L12.	3.3	46
47	Ram Pressure Stripping of an Isolated Local Group Dwarf Galaxy: Evidence for an Intragroup Medium. Astrophysical Journal, 2007, 671, L33-L36.	4.5	45
48	The Pristine survey – III. Spectroscopic confirmation of an efficient search for extremely metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2963-2974.	4.4	45
49	The <i>Pristine</i> Survey – VIII. The metallicity distribution function of the Milky Way halo down to the extremely metal-poor regime. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4986-5002.	4.4	45
50	Updated Proper Motions for Local Group Dwarf Galaxies Using Gaia Early Data Release 3. Research Notes of the AAS, 2020, 4, 229.	0.7	45
51	Stellar Abundances and Winds of A-Type Supergiant Stars in M33: First Results from the Keck HIRES Spectrograph. Astrophysical Journal, 1995, 455, .	4.5	41
52	The Pristine Inner Galaxy Survey (PIGS) I: tracing the kinematics of metal-poor stars in the Galactic bulge. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 491, L11-L16.	3.3	40
53	The Pristine survey – IX. CFHT ESPaDOnS spectroscopic analysis of 115 bright metal-poor candidate stars. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3241-3262.	4.4	40
54	The r-process Pattern of a Bright, Highly r-process-enhanced Metal-poor Halo Star at [Fe/H]Ââ^1⁄4Ââ^'2. Astrophysical Journal Letters, 2018, 854, L20.	8.3	38

#	Article	IF	CITATIONS
55	Could the Ultra–Metalâ€Poor Stars be Chemically Peculiar and Not Related to the First Stars?. Astrophysical Journal, 2008, 677, 572-580.	4.5	37
56	Massâ€Loss Rates and Stellar Wind Momenta of Aâ€Supergiants in M31: First Results from the Keck HIRES Spectrograph. Astrophysical Journal, 1997, 482, 757-764.	4.5	36
57	STELLAR METALLICITIES AND KINEMATICS IN A GAS-RICH DWARF GALAXY: FIRST CALCIUM TRIPLET SPECTROSCOPY OF RED GIANT BRANCH STARS IN WLM. Astrophysical Journal, 2009, 699, 1-14.	4.5	35
58	The Populations of Carina. II. Chemical Enrichment [*] . Astrophysical Journal, Supplement Series, 2017, 230, 28.	7.7	34
59	The Pristine Inner Galaxy Survey (PIGS) II: Uncovering the most metal-poor populations in the inner Milky Way. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4964-4978.	4.4	34
60	The chemistry of the most metal-rich damped Lyman α systems at <i>z</i> Ââ^¼Â2 – II. Context with the Local Group. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4326-4346.	4.4	32
61	Through thick and thin: kinematic and chemical components in the solar neighbourhood. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	31
62	Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Surveyâ~ Monthly Notices of the Royal Astronomical Society, 2015, 448, 1314-1334.	4.4	31
63	Exploring the origin of low-metallicity stars in Milky-Way-like galaxies with the NIHAO-UHD simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3750-3762.	4.4	30
64	Gemini/GRACES spectroscopy of stars in TriÂll. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3741-3752.	4.4	29
65	The Distance to an X-Ray Shadowing Molecular Cloud in Ursa Major. Astrophysical Journal, 1996, 464, 836.	4.5	28
66	Spectrum syntheses of high-resolution integrated light spectra of Galactic globular clustersâ~ Monthly Notices of the Royal Astronomical Society, 2013, 434, 358-386.	4.4	27
67	Chemical abundances in the globular clusters NGC 5024 and NGC 5466 from optical☠and infrared spectroscopy. Monthly Notices of the Royal Astronomical Society, 2015, 448, 42-58.	4.4	27
68	The Pristine survey – XII. Gemini-GRACES chemo-dynamical study of newly discovered extremely metal-poor stars in the Galaxy. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1438-1461.	4.4	24
69	DETAILED CHEMICAL ABUNDANCES OF FOUR STARS IN THE UNUSUAL GLOBULAR CLUSTER PALOMAR 1. Astrophysical Journal, 2011, 740, 106.	4.5	23
70	SEARCHING FOR DUST AROUND HYPER METAL POOR STARS. Astrophysical Journal, 2014, 791, 98.	4.5	23
71	SEARCHING FOR THE HR 8799 DEBRIS DISK WITH HST/STIS. Astrophysical Journal, 2016, 823, 149.	4.5	23
72	The scatter about the â€~Universal' dwarf spheroidal mass profile: a kinematic study of the M31 satellites And V and And VI. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1170-1182	4.4	22

#	Article	IF	CITATIONS
73	Solo dwarfs I: survey introduction and first results for the Sagittarius dwarf irregular galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1678-1695.	4.4	22
74	A stellar stream remnant of a globular cluster below the metallicity floor. Nature, 2022, 601, 45-48.	27.8	22
75	Testing Rotational Mixing Predictions with New Boron Abundances in Main‣equence Bâ€Type Stars. Astrophysical Journal, 2006, 640, 1039-1050.	4.5	21
76	The Pristine Inner Galaxy Survey (PIGS) III: carbon-enhanced metal-poor stars in the bulge. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1239-1253.	4.4	20
77	The Hidden Past of M92: Detection and Characterization of a Newly Formed 17° Long Stellar Stream Using the Canada–France Imaging Survey. Astrophysical Journal, 2020, 902, 89.	4.5	20
78	Chemical Mapping of the Milky Way with The Canada–France Imaging Survey: A Non-parametric Metallicity–Distance Decomposition of the Galaxy. Astrophysical Journal, 2017, 848, 129.	4.5	19
79	The chemical evolution of the dwarf spheroidal galaxy Sextans. Astronomy and Astrophysics, 2020, 642, A176.	5.1	19
80	The R-Process Alliance: Discovery of a Low-α, r-process-enhanced Metal-poor Star in the Galactic Halo. Astrophysical Journal, 2019, 874, 148.	4.5	18
81	A-type stars in the Canada–France Imaging Survey – II. Tracing the height of the disc at large distances with Blue Stragglers. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3119-3126.	4.4	18
82	Optimal integrated abundances for chemical tagging of extragalactic globular clustersâ~ Monthly Notices of the Royal Astronomical Society, 2014, 443, 2285-2310.	4.4	17
83	The pristine dwarf-galaxy survey – III. Revealing the nature of the Milky Way globular cluster Sagittarius II. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2754-2762.	4.4	17
84	Stellar Rotation: A Clue to the Origin of High-Mass Stars?. Astronomical Journal, 2006, 132, 749-755.	4.7	16
85	The Pristine survey II: A sample of bright stars observed with FEROS. Astronomische Nachrichten, 2017, 338, 686-695.	1.2	16
86	Using the multi-object adaptive optics demonstrator RAVEN to observe metal-poor stars in and towards the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3536-3557.	4.4	16
87	The Pristine survey – V. A bright star sample observed with SOPHIE. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3797-3814.	4.4	16
88	Solo dwarfs – III. Exploring the orbital origins of isolated Local Group galaxies with <i>Gaia</i> Data Release 2. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2363-2377.	4.4	15
89	Solo dwarfs II: the stellar structure of isolated Local Group dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 176-199.	4.4	14
90	Cycle-StarNet: Bridging the Gap between Theory and Data by Leveraging Large Data Sets. Astrophysical Journal, 2021, 906, 130.	4.5	14

#	Article	IF	CITATIONS
91	The GeMS/GSAOI Galactic Globular Cluster Survey (G4CS). I. A Pilot Study of the Stellar Populations in NGC 2298 and NGC 3201. Astrophysical Journal, 2018, 865, 160.	4.5	13
92	The Pristine survey – VII. A cleaner view of the Galactic outer halo using blue horizontal branch stars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5757-5769.	4.4	13
93	Assessing the performance of LTE and NLTE synthetic stellar spectra in a machine learning framework. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3817-3834.	4.4	13
94	CNO abundances and the evolutionary status of three A-type supergiants. Astrophysical Journal, 1993, 414, 316.	4.5	12
95	The Pristine survey XI: the FORS2 sample. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4677-4691.	4.4	11
96	The Pristine survey – XV. A CFHT ESPaDOnS view on the Milky Way halo and disc populations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1004-1021.	4.4	10
97	Homogeneity in the early chemical evolution of the Sextans dwarf spheroidal galaxy. Astronomy and Astrophysics, 2020, 644, A75.	5.1	9
98	IRMOS: The near-infrared multi-object spectrograph for the TMT. , 2006, , .		8
99	PROBING THE M33 HALO USING RR LYRAE STARS. Astronomical Journal, 2011, 142, 198.	4.7	8
100	A search for boron in damped Lyα systems. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2892-2906.	4.4	8
101	Multi-object adaptive optics on-sky results with Raven. Proceedings of SPIE, 2014, , .	0.8	8
102	The peculiar globular cluster Palomar 1 and persistence in the SDSS-APOGEE data base. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4782-4793.	4.4	7
103	The Pristine survey – XIV. Chemical analysis of two ultra-metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3068-3083.	4.4	7
104	Joint gas and stellar dynamical models of WLM: an isolated dwarf galaxy within a cored, prolate DM halo. Monthly Notices of the Royal Astronomical Society, 2020, 500, 410-429.	4.4	7
105	Mauna Kea Spectroscopic Explorer (MSE): a preliminary design of multi-object high resolution spectrograph. , 2018, , .		6
106	The <i>Pristine</i> survey – XVIII. C-19: tidal debris of a dark matter-dominated globular cluster?. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3532-3540.	4.4	6
107	Raven: a harbinger of multi-object adaptive optics-based instruments at the Subaru Telescope. , 2010, , .		5

108 MSE FiTS: the ultimate multi-fiber optic transmission system. , 2018, , .

5

#	Article	IF	CITATIONS
109	The Pristine survey – XVII. The C-19 stream is dynamically hot and more extended than previously thought. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1664-1671.	4.4	4
110	Gemini high-resolution optical spectrograph conceptual design. Proceedings of SPIE, 2012, , .	0.8	2
111	The Populations of Carina. I. Decoding the Color–Magnitude Diagram. Astrophysical Journal, Supplement Series, 2017, 230, 27.	7.7	2
112	Gemini Infrared Multi-Object Spectrograph: preliminary design overview. , 2020, , .		2
113	Optimal Differential Astrometry for Multiconjugate Adaptive Optics. I. Astrometric Distortion Mapping using On-sky GeMS Observations of NGC 6723. Astronomical Journal, 2022, 163, 187.	4.7	2
114	Chemical abundances of massive stars in Local Group galaxies. Symposium - International Astronomical Union, 2003, 212, 30-37.	0.1	1
115	Chemistry of Stars in the Sculptor Dwarf Galaxy from VLT-FLAMES. Proceedings of the International Astronomical Union, 2005, 1, 513-518.	0.0	1
116	Stellar Abundances in Local Group Galaxies. Highlights of Astronomy, 2005, 13, 548-553.	0.0	1
117	Science with GYES: a multifibre high-resolution spectrograph for the prime focus of the Canada-France-Hawaii Telescope. , 2010, , .		1
118	GYES, A Multifibre Spectrograph for the CFHT. EAS Publications Series, 2010, 45, 219-222.	0.3	1
119	Stellar Kinematics of the Isolated Dwarf Irregular WLM. EAS Publications Series, 2011, 48, 59-60.	0.3	1
120	The Search for Extremely Low-Metallicity Stars in Dwarf Galaxies Using the NIR Ca II Triplet. EAS Publications Series, 2011, 48, 13-18.	0.3	1
121	Evidence of ancient Milky Way merger. Nature, 2018, 563, 43-44.	27.8	1
122	i process and CEMP-s+r stars. , 2015, , .		1
123	LTE and NLTE abundances in a-supergiants a test of their evolutionary status. Space Science Reviews, 1994, 66, 163-168.	8.1	0
124	Flames High Resolution Spectroscopy of RGB Stars in the Carina Dwarf Spheroidal Galaxy. EAS Publications Series, 2011, 48, 73-75.	0.3	0
125	Connections between MWG Star Clusters and Dwarf Galaxies. Proceedings of the International Astronomical Union, 2012, 10, 275-277.	0.0	0
126	Chemical Abundances of Metal-poor stars in Dwarf Galaxies. Proceedings of the International Astronomical Union, 2015, 11, 159-163.	0.0	0

#	Article	IF	CITATIONS
127	Binarity in CEMP-no stars. Proceedings of the International Astronomical Union, 2017, 13, 273-274.	0.0	Ο
128	Chemistry and binarity in the early Universe: what is the role of metal-poor AGB stars?. Proceedings of the International Astronomical Union, 2018, 14, 265-267.	0.0	0
129	A-type Stellar Abundances: A Corollary to Herschel Observations of Debris Disks. Astrophysical Journal, 2018, 857, 93.	4.5	0
130	LTE and NLTE Abundances in A-Supergiants a Test of Their Evolutionary Status. , 1994, , 163-168.		0
131	Extragalactic Stellar Abundances: Oxygen in Extreme A-Type Supergiants. Globular Clusters - Guides To Galaxies, 1999, , 123-123.	0.1	0
132	Automated testing of optical fibres: towards the design of the Maunakea Spectroscopic Explorer Fibre Transmission System. , 2018, , .		0
133	StarNet: a deep learning analysis of infrared stellar spectra. , 2018, , .		0