Florent Allais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159978/publications.pdf

Version: 2024-02-01

136885 3,726 146 32 citations h-index papers

50 g-index 154 3217 citing authors

189801

154 all docs

154 docs citations

times ranked

#	Article	IF	CITATIONS
1	Nanocrystallisation and self-assembly of biosourced ferulic acid derivative in polylactic acid elastomeric blends. Journal of Colloid and Interface Science, 2022, 606, 1842-1851.	5.0	6
2	Towards a comprehensive sustainability methodology to assess anthropogenic impacts on ecosystems: Review of the integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. Science of the Total Environment, 2022, 808, 152125.	3.9	35
3	Predictive modeling and experimental implementation of organic acids in stream recovery by reactive extraction in membrane contactors. Chemical Engineering Journal, 2022, 431, 134067.	6.6	2
4	Sustainable synthesis, <i>in silico</i> evaluation of potential toxicity and environmental fate, antioxidant and UV-filtering/photostability activity of phenolic-based thiobarbituric derivatives. Green Chemistry Letters and Reviews, 2022, 15, 116-127.	2.1	6
5	Optimization of the Recovery of Secondary Metabolites from Defatted Brassica carinata Meal and Its Effects on the Extractability and Functional Properties of Proteins. Foods, 2022, 11, 429.	1.9	o
6	Fully renewable photocrosslinkable polycarbonates from cellulose-derived monomers. Green Chemistry, 2022, 24, 2871-2881.	4.6	11
7	Improved Processability and Antioxidant Behavior of Poly(3-hydroxybutyrate) in Presence of Ferulic Acid-Based Additives. Bioengineering, 2022, 9, 100.	1.6	4
8	Extraction and Purification Processes of Sinapic Acid Derivatives from Rapeseed and Mustard Seed By-Products. Separation and Purification Reviews, 2022, 51, 521-544.	2.8	4
9	Photocatalytic Radical Addition to Levoglucosenone. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
10	Impact of Bis-O-dihydroferuloyl-1,4-butanediol Content on the Chemical, Enzymatic and Fungal Degradation Processes of Poly(3-hydroxybutyrate). Polymers, 2022, 14, 1564.	2.0	3
11	Evaluation of the Potential of Lipid-Extracted Chlorella vulgaris Residue for Yarrowia lipolytica Growth at Different pH Levels. Marine Drugs, 2022, 20, 264.	2.2	O
12	In-stream product recovery of p-coumaric acid heterologously produced: Implementation of a continuous liquid-liquid extraction assisted by hollow fiber membrane contactor. Separation and Purification Technology, 2022, 293, 121083.	3.9	8
13	Green assessment of polymer microparticles production processes: a critical review. Green Chemistry, 2022, 24, 4237-4269.	4.6	16
14	Synthesis and Enzymatic Degradation of Sustainable Levoglucosenone-Derived Copolyesters with Renewable Citronellol Side Chains. Polymers, 2022, 14, 2082.	2.0	8
15	Mechanochemical synthesis of $(4S)-N-alkyl-4,5-bis-sulfooxypentanamideviaa one-pot sequential aminolysis-sulfation reaction of (S)-Î^3-hydroxymethyl-γ-butyrolactone (2H-HBO). Green Chemistry, 2022, 24, 5856-5861.$	4.6	3
16	Optimization and Green Metrics Analysis of the AgOAc-Mediated Dimerization of Piceid: Toward a High-Yielding and More Sustainable Access to Î'-Viniferin and Synthesis of New Piceid Dimers. ACS Sustainable Chemistry and Engineering, 2022, 10, 9166-9175.	3.2	0
17	Accessing <i>p</i> à€Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production?. ChemSusChem, 2021, 14, 118-129.	3 . 6	40
18	Solvent selection strategy for an ISPR (In Situ/In stream product recovery) process: The case of microbial production of p-coumaric acid coupled with a liquid-liquid extraction. Separation and Purification Technology, 2021, 259, 118170.	3.9	12

#	Article	IF	CITATIONS
19	New Generation UV-A Filters: Understanding Their Photodynamics on a Human Skin Mimic. Journal of Physical Chemistry Letters, 2021, 12, 337-344.	2.1	23
20	Selective Extraction of Sinapic Acid Derivatives from Mustard Seed Meal by Acting on pH: Toward a High Antioxidant Activity Rich Extract. Molecules, 2021, 26, 212.	1.7	14
21	Effective Lignin Utilization Strategy: Major Depolymerization Technologies, Purification Process and Production of Valuable Material. Chemistry Letters, 2021, 50, 1123-1130.	0.7	7
22	Are lignin-derived monomers and polymers truly sustainable? An in-depth green metrics calculations approach. Green Chemistry, 2021, 23, 1495-1535.	4.6	66
23	Valorization of waste biomass from oleaginous "oil-bearing―seeds through the biocatalytic production of sinapic acid from mustard bran. Biomass and Bioenergy, 2021, 145, 105940.	2.9	10
24	Optimization and Comparison of Three Cell Disruption Processes on Lipid Extraction from Microalgae. Processes, 2021, 9, 369.	1.3	18
25	Synthesis of Biobased Phloretin Analogues: An Access to Antioxidant and Anti-Tyrosinase Compounds for Cosmetic Applications. Antioxidants, 2021, 10, 512.	2.2	11
26	Blending Ferulic Acid Derivatives and Polylactic Acid into Biobased and Transparent Elastomeric Materials with Shape Memory Properties. Biomacromolecules, 2021, 22, 1568-1578.	2.6	15
27	Implementation of an Enzyme Membrane Reactor to Intensify the α-O-Glycosylation of Resveratrol Using Cyclodextrins. Pharmaceuticals, 2021, 14, 319.	1.7	5
28	Phenolic Ester-Decorated Cellulose Nanocrystals as UV-Absorbing Nanoreinforcements in Polyvinyl Alcohol Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 6427-6437.	3.2	27
29	Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery From Biomass, and Biological Activities. Frontiers in Chemistry, 2021, 9, 664602.	1.8	25
30	Development of a life cycle impact assessment framework accounting for biodiversity in deep seafloor ecosystems: A case study on the Clarion Clipperton Fracture Zone. Science of the Total Environment, 2021, 770, 144747.	3.9	5
31	Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. ChemSusChem, 2021, 14, 4007-4027.	3.6	73
32	Sustainable Hyperbranched Functional Materials via Green Polymerization of Readily Accessible Levoglucosenoneâ€Derived Monomers. Macromolecular Rapid Communications, 2021, 42, e2100284.	2.0	8
33	Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete. Construction and Building Materials, 2021, 301, 124065.	3.2	27
34	Diethyl sinapate-grafted cellulose nanocrystals as nature-inspired UV filters in cosmetic formulations. Materials Today Bio, 2021, 12, 100126.	2.6	9
35	Intensification of p-coumaric acid heterologous production using extractive biphasic fermentation. Bioresource Technology, 2021, 337, 125436.	4.8	13
36	Green synthesis of 2-deoxy-D-ribonolactone from cellulose-derived levoglucosenone (LGO): A promising monomer for novel bio-based polyesters. European Polymer Journal, 2021, 159, 110745.	2.6	8

#	Article	IF	Citations
37	Simultaneous extraction and enzymatic hydrolysis of mustard bran for the recovery of sinapic acid. Food and Bioproducts Processing, 2021, 130, 68-78.	1.8	9
38	The continuous evolution of the Bazancourt–Pomacle site rooted in the commitment and vision of pioneering farmers. When reality shapes the biorefinery concept. EFB Bioeconomy Journal, 2021, 1, 100007.	1.1	4
39	Identification and expression of a CHMO from the Pseudomonas aeruginosa strain Pa1242: application to the bioconversion of Cyreneâ,,¢ into a key precursor (S)- \hat{I}^3 -hydroxymethyl-butyrolactone. Green Chemistry, 2021, 23, 2694-2702.	4.6	2
40	Towards developing novel and sustainable molecular light-to-heat converters. Chemical Science, 2021, 12, 15239-15252.	3.7	18
41	Bio-based photo-reversible self-healing polymer designed from lignin. Green Chemistry, 2021, 23, 10050-10061.	4.6	19
42	Unprecedented Biodegradable Cellulose-Derived Polyesters with Pendant Citronellol Moieties: From Monomer Synthesis to Enzymatic Degradation. Molecules, 2021, 26, 7672.	1.7	9
43	($\langle i \rangle S \langle i \rangle$)- \hat{I}^3 -Hydroxymethyl- \hat{I}^2 -butenolide, a Valuable Chiral Synthon: Syntheses, Reactivity, and Applications. Organic Process Research and Development, 2020, 24, 615-636.	1.3	13
44	Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets. Algal Research, 2020, 45, 101737.	2.4	20
45	Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules, 2020, 25, 4537.	1.7	62
46	A straightforward access to functionalizable polymers through ring-opening metathesis polymerization of levoglucosenone-derived monomers. European Polymer Journal, 2020, 138, 109980.	2.6	19
47	Chemo-enzymatic synthesis of a levoglucosenone-derived bi-functional monomer and its ring-opening metathesis polymerization in the green solvent Cyreneâ, ¢. Polymer Chemistry, 2020, 11, 7471-7475.	1.9	25
48	Synthesis and polymerization of bio-based acrylates: a review. Polymer Chemistry, 2020, 11, 7452-7470.	1.9	52
49	Conservation of ultrafast photoprotective mechanisms with increasing molecular complexity in sinapoyl malate derivatives. ChemPhysChem, 2020, 21, 2006-2011.	1.0	10
50	Exploring the Photochemistry of an Ethyl Sinapate Dimer: An Attempt Toward a Better Ultraviolet Filter. Frontiers in Chemistry, 2020, 8, 633.	1.8	9
51	Sinapic Acid Esters: Octinoxate Substitutes Combining Suitable UV Protection and Antioxidant Activity. Antioxidants, 2020, 9, 782.	2.2	28
52	Grafting Natureâ€Inspired and Bioâ€Based Phenolic Esters onto Cellulose Nanocrystals Gives Biomaterials with Photostable Antiâ€UV Properties. ChemSusChem, 2020, 13, 6552-6561.	3.6	24
53	Expeditious and sustainable two-step synthesis of sinapoyl- <scp>l</scp> -malate and analogues: towards non-endocrine disruptive bio-based and water-soluble bioactive compounds. Green Chemistry, 2020, 22, 6510-6518.	4.6	16
54	Inhibition of Phenolics Uptake by Ligninolytic Fungal Cells and Its Potential as a Tool for the Production of Lignin-Derived Aromatic Building Blocks. Journal of Fungi (Basel, Switzerland), 2020, 6, 362.	1.5	4

#	Article	IF	CITATIONS
55	Grafting Natureâ€Inspired and Bioâ€Based Phenolic Esters onto Cellulose Nanocrystals Gives Biomaterials with Photostable Antiâ€UV Properties. ChemSusChem, 2020, 13, 6460-6460.	3.6	1
56	Cellulose-Derived Levoglucosenone, a Great Versatile Chemical Platform for the Production of Renewable Monomers and Polymers. ACS Symposium Series, 2020, , 77-97.	0.5	10
57	Innovative Bio-Based Organic UV-A and Blue Light Filters from Meldrum's Acid. Molecules, 2020, 25, 2178.	1.7	18
58	Sustainable Straightforward Synthesis and Evaluation of the Antioxidant and Antimicrobial Activity of Sinapine and Analogues. Journal of Agricultural and Food Chemistry, 2020, 68, 6998-7004.	2.4	20
59	Optimization of an ethanol/water-based sinapine extraction from mustard bran using Response Surface Methodology. Food and Bioproducts Processing, 2020, 122, 322-331.	1.8	21
60	Editorial: From Biomass to Advanced Bio-Based Chemicals & Multidisciplinary Perspective. Frontiers in Chemistry, 2020, 8, 131.	1.8	6
61	Simultaneous recovery of ferulic acid and sugars from wheat bran enzymatic hydrolysate by diananofiltration. Separation and Purification Technology, 2020, 242, 116755.	3.9	16
62	Biomimetic regioselective and high-yielding Cu(i)-catalyzed dimerization of sinapate esters in green solvent Cyreneâ,, towards sustainable antioxidant and anti-UV ingredients. Green Chemistry, 2020, 22, 2077-2085.	4.6	32
63	Bio-based production of chemicals through metabolic engineering. , 2020, , 171-202.		1
64	Sustainable Synthesis and Polycondensation of Levoglucosenoneâ€Cyreneâ€Based Bicyclic Diol Monomer: Access to Renewable Polyesters. ChemSusChem, 2020, 13, 2613-2620.	3.6	21
65	Sustainable Synthesis of p-Hydroxycinnamic Diacids through Proline-Mediated Knoevenagel Condensation in Ethanol: An Access to Potent Phenolic UV Filters and Radical Scavengers. Antioxidants, 2020, 9, 331.	2.2	22
66	Towards symmetry driven and nature inspired UV filter design. Nature Communications, 2019, 10, 4748.	5.8	54
67	Improvement of protein content and decrease of anti-nutritional factors in oliveÂcake by solid-state fermentation: A way to valorize this industrialÂby-productÂinÂanimal feed. Journal of Bioscience and Bioengineering, 2019, 128, 384-390.	1.1	43
68	Proline-Mediated Knoevenagel–Doebner Condensation in Ethanol: A Sustainable Access to <i>p</i> -Hydroxycinnamic Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 9422-9427.	3.2	35
69	Eco-Friendly Extraction of Sinapine From Residues of Mustard Production. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	15
70	Preparation of Renewable Epoxy-Amine Resins With Tunable Thermo-Mechanical Properties, Wettability and Degradation Abilities From Lignocellulose- and Plant Oils-Derived Components. Frontiers in Chemistry, 2019, 7, 159.	1.8	26
71	Recovery of 3-hydroxypropionic acid from organic phases after reactive extraction with amines in an alcohol-type solvent. Separation and Purification Technology, 2019, 219, 260-267.	3.9	11
72	First Total Synthesis of (\hat{l}^2 -5)-(\hat{l}^2 -O-4) Dihydroxytrimer and Dihydrotrimer of Coniferyl Alcohol (G): Advanced Lignin Model Compounds. Frontiers in Chemistry, 2019, 7, 842.	1.8	6

#	Article	IF	CITATIONS
73	Highâ€Performance Bioâ€Based Benzoxazines from Enzymatic Synthesis of Diphenols. Macromolecular Chemistry and Physics, 2019, 220, 1800312.	1.1	43
74	Ferulic acid derivatives used as biobased powders for a convenient plasticization of polylactic acid in continuous hot-melt process. European Polymer Journal, 2019, 110, 293-300.	2.6	15
75	Highâ€Yielding Diastereoselective <i>syn</i> â€Dihydroxylation of Protected HBO: An Access to Dâ€(+)â€Ribonoâ€1,4â€lactone and 5â€ <i>O</i> â€Protected Analogues. European Journal of Organic Chemistry, 2019, 2019, 1600-1604.	1.2	11
76	Towards an <i>in situ</i> product recovery of bioâ€based 3â€hydroxypropionic acid: influence of bioconversion broth components on membraneâ€assisted reactive extraction. Journal of Chemical Technology and Biotechnology, 2019, 94, 964-972.	1.6	8
77	Enzymatic Synthesis of Resveratrol \hat{l} ±-Glycosides from \hat{l}^2 -Cyclodextrin-Resveratrol Complex in Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 5370-5380.	3.2	28
78	Investigating isomer specific photoprotection in a model plant sunscreen. Chemical Communications, 2018, 54, 936-939.	2.2	33
79	Organic solvent- and catalyst-free Baeyer–Villiger oxidation of levoglucosenone and dihydrolevoglucosenone (Cyrene®): a sustainable route to (<i>S</i>)-γ-hydroxymethyl-α,β-butenolide and (<i>S</i>)-γ-hydroxymethyl-γ-butyrolactone. Green Chemistry, 2018, 20, 2455-2458.	4.6	44
80	Recovering ferulic acid from wheat bran enzymatic hydrolysate by a novel and non-thermal process associating weak anion-exchange and electrodialysis. Separation and Purification Technology, 2018, 200, 75-83.	3.9	21
81	Enzymatic reduction of levoglucosenone by an alkene reductase (OYE 2.6): a sustainable metal- and dihydrogen-free access to the bio-based solvent Cyrene®. Green Chemistry, 2018, 20, 5528-5532.	4.6	33
82	Ferulic Acid- and Sinapic Acid-Based Bisphenols: Promising Renewable and Safer Alternatives to Bisphenol A for the Production of Bio-Based Polymers and Resins. ACS Symposium Series, 2018, , 221-251.	0.5	5
83	Microwave-Assisted Knoevenagel-Doebner Reaction: An Efficient Method for Naturally Occurring Phenolic Acids Synthesis. Frontiers in Chemistry, 2018, 6, 426.	1.8	24
84	Chemo-Enzymatic Synthesis and Free Radical Polymerization of Renewable Acrylate Monomers from Cellulose-Based Lactones. ACS Sustainable Chemistry and Engineering, 2018, 6, 17284-17293.	3.2	23
85	Chemo-Enzymatic Synthesis of Renewable Sterically-Hindered Phenolic Antioxidants with Tunable Polarity from Lignocellulose and Vegetal Oil Components. International Journal of Molecular Sciences, 2018, 19, 3358.	1.8	13
86	Development of potential yield loss indicators to assess the effect of seaweed farming on fish landings. Algal Research, 2018, 35, 194-205.	2.4	12
87	Detoxification of highly acidic hemicellulosic hydrolysate from wheat straw by diananofiltration with a focus on phenolic compounds. Journal of Membrane Science, 2018, 566, 112-121.	4.1	20
88	Importance of Mediators for Lignin Degradation by Fungal Laccase. ACS Sustainable Chemistry and Engineering, 2018, 6, 10097-10107.	3.2	77
89	Gasâ€Solution Phase Transient Absorption Study of the Plant Sunscreen Derivative Methyl Sinapate. ChemPhotoChem, 2018, 2, 743-748.	1.5	26
90	Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana. Scientific Reports, 2018, 8, 8534.	1.6	25

#	Article	IF	CITATIONS
91	Towards an extractive bioconversion of 3â€hydroxypropionic acid: study of inhibition phenomena. Journal of Chemical Technology and Biotechnology, 2017, 92, 2425-2432.	1.6	15
92	Ultrafast Barrierless Photoisomerization and Strong Ultraviolet Absorption of Photoproducts in Plant Sunscreens. Journal of Physical Chemistry Letters, 2017, 8, 1025-1030.	2.1	76
93	New insights in reactive extraction mechanisms of organic acids: An experimental approach for 3-hydroxypropionic acid extraction with tri-n-octylamine. Separation and Purification Technology, 2017, 179, 523-532.	3.9	25
94	A novel and integrative process: From enzymatic fractionation of wheat bran with a hemicellulasic cocktail to the recovery of ferulic acid by weak anion exchange resin. Industrial Crops and Products, 2017, 105, 148-155.	2.5	29
95	From bench scale to kilolab production of renewable ferulic acid-based bisphenols: optimisation and evaluation of different purification approaches towards technical feasibility and process environmental sustainability. Reaction Chemistry and Engineering, 2017, 2, 406-419.	1.9	8
96	Syringaresinol: A Renewable and Safer Alternative to Bisphenolâ€A for Epoxyâ€Amine Resins. ChemSusChem, 2017, 10, 738-746.	3.6	102
97	Chemo-Enzymatic Synthesis and Characterization of Renewable Thermoplastic and Thermoset Isocyanate-Free Poly(hydroxy)urethanes from Ferulic Acid Derivatives. ACS Sustainable Chemistry and Engineering, 2017, 5, 1446-1456.	3.2	55
98	Exploring the microstructure of natural fibre composites by confocal Raman imaging and image analysis. Composites Part A: Applied Science and Manufacturing, 2017, 94, 32-40.	3.8	21
99	Microstructural and Chemical Approach To Highlight How a Simple Methyl Group Affects the Mechanical Properties of a Natural Fibers Composite. ACS Sustainable Chemistry and Engineering, 2017, 5, 10352-10360.	3.2	2
100	Isocyanate-Free Synthesis and Characterization of Renewable Poly(hydroxy)urethanes from Syringaresinol. ACS Sustainable Chemistry and Engineering, 2017, 5, 8648-8656.	3.2	73
101	Elucidating nuclear motions in a plant sunscreen during photoisomerization through solvent viscosity effects. Physical Chemistry Chemical Physics, 2017, 19, 21127-21131.	1.3	30
102	Mechanistic modeling and equilibrium prediction of the reactive extraction of organic acids with amines: A comparative study of two complexation-solvation models using 3-hydroxypropionic acid. Separation and Purification Technology, 2017, 189, 475-487.	3.9	11
103	Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Advances, 2017, 7, 34638-34654.	1.7	86
104	Ferulic acid-based renewable esters and amides-containing epoxy thermosets from wheat bran and beetroot pulp: Chemo-enzymatic synthesis and thermo-mechanical properties characterization. Industrial Crops and Products, 2017, 95, 83-95.	2.5	67
105	Biocatalytic Synthesis and Polymerization via ROMP of New Biobased Phenolic Monomers: A Greener Process toward Sustainable Antioxidant Polymers. Frontiers in Chemistry, 2017, 5, 126.	1.8	18
106	Wheat and Sugar Beet Coproducts for the Bioproduction of 3-Hydroxypropionic Acid by Lactobacillus reuteri DSM17938. Fermentation, 2017, 3, 32.	1.4	12
107	Lipase-Catalyzed Baeyer-Villiger Oxidation of Cellulose-Derived Levoglucosenone into (S)- \hat{l}^3 -Hydroxymethyl- \hat{l}_\pm,\hat{l}^2 -Butenolide: Optimization by Response Surface Methodology. Frontiers in Chemistry, 2016, 4, 16.	1.8	18
108	Chemo-Enzymatic Synthesis of Chiral Epoxides Ethyl and Methyl (S)-3-(Oxiran-2-yl)propanoates from Renewable Levoglucosenone: An Access to Enantiopure (S)-Dairy Lactone. Molecules, 2016, 21, 988.	1.7	19

#	Article	IF	CITATIONS
109	Reactive extraction of 3-hydroxypropionic acid from model aqueous solutions and real bioconversion media. Comparison with its isomer 2-hydroxypropionic (lactic) acid. Journal of Chemical Technology and Biotechnology, 2016, 91, 2276-2285.	1.6	15
110	Chemo-enzymatic preparation and characterization of renewable oligomers with bisguaiacol moieties: promising sustainable antiradical/antioxidant additives. Green Chemistry, 2016, 18, 3334-3345.	4.6	33
111	ADMET polymerization of biobased monomers deriving from syringaresinol. RSC Advances, 2016, 6, 44297-44304.	1.7	26
112	Optimization of the Laccase-Catalyzed Synthesis of (\hat{A}_{\pm}) -Syringaresinol and Study of its Thermal and Antiradical Activities. ChemistrySelect, 2016, 1, 5165-5171.	0.7	54
113	Ferulic Acid-Based Bis/Trisphenols as Renewable Antioxidants for Polypropylene and Poly(butylene) Tj ETQq1 1 C	.784314 ı	rgBT ₄₃ Overloc
114	Structure property relationships of biobased n-alkyl bisferulate epoxy resins. Green Chemistry, 2016, 18, 4961-4973.	4.6	73
115	Reactive extraction of bio-based 3-hydroxypropionic acid assisted by hollow-fiber membrane contactor using TOA and Aliquat 336 in <i>n</i> decanol. Journal of Chemical Technology and Biotechnology, 2016, 91, 2705-2712.	1.6	24
116	Monitoring of free phenol content in lignosulfonates by ClO ₂ titration and UV difference spectroscopy. Holzforschung, 2016, 70, 719-724.	0.9	5
117	Ultrafast Photoprotecting Sunscreens in Natural Plants. Journal of Physical Chemistry Letters, 2016, 7, 56-61.	2.1	100
118	Structure–Activity Relationships and Structural Design Optimization of a Series of ⟨i⟩p⟨ i⟩-Hydroxycinnamic Acids-Based Bis- and Trisphenols as Novel Sustainable Antiradical/Antioxidant Additives. ACS Sustainable Chemistry and Engineering, 2015, 3, 3486-3496.	3.2	47
119	Renewable polymers derived from ferulic acid and biobased diols via ADMET. European Polymer Journal, 2015, 62, 236-243.	2.6	82
120	Comparative electrochemical study on monolignols and dimers relevant for the comprehension of the lignification process. Phytochemistry Letters, 2015, 13, 280-285.	0.6	13
121	Chemo-enzymatic Synthesis, Derivatizations, and Polymerizations of Renewable Phenolic Monomers Derived from Ferulic Acid and Biobased Polyols: An Access to Sustainable Copolyesters, Poly(ester-urethane)s, and Poly(ester-alkenamer)s. ACS Symposium Series, 2015, , 41-68.	0.5	9
122	Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid. Applied Biochemistry and Biotechnology, 2015, 177, 923-939.	1.4	36
123	Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains. Journal of Microbiology, 2015, 53, 702-710.	1.3	23
124	3-Hydroxypropionaldehyde (3-HPA) quantification by HPLC using a synthetic acrolein-free 3-hydroxypropionaldehyde system as analytical standard. RSC Advances, 2015, 5, 92619-92627.	1.7	11
125	Renewable alternating aliphatic-aromatic poly(ester-urethane)s prepared from ferulic acid and bio-based diols. European Polymer Journal, 2015, 63, 186-193.	2.6	64
126	Chemo-enzymatic synthesis of key intermediates (S)-γ-hydroxymethyl-α,β-butenolide and (S)-γ-hydroxymethyl-γ-butyrolactone via lipase-mediated Baeyer–Villiger oxidation of levoglucosenone. Green Chemistry, 2015, 17, 404-412.	4.6	59

#	Article	IF	Citations
127	Renewable Alternating Aliphatic–Aromatic Copolyesters Derived from Biobased Ferulic Acid, Diols, and Diacids: Sustainable Polymers with Tunable Thermal Properties. Macromolecular Chemistry and Physics, 2014, 215, 431-439.	1.1	110
128	Plant Sunscreens in the UV-B: Ultraviolet Spectroscopy of Jet-Cooled Sinapoyl Malate, Sinapic Acid, and Sinapate Ester Derivatives. Journal of the American Chemical Society, 2014, 136, 14780-14795.	6.6	141
129	Chemoenzymatic Total Synthesis of a Naturally Occurring (5â€5′)/(8′â€ <i>O</i> àê€4″) Dehydrotrimer of Acid. European Journal of Organic Chemistry, 2013, 2013, 173-179.	Ferulic 1.2	28
130	Chemo-enzymatic preparation of new bio-based bis- and trisphenols: new versatile building blocks for polymer chemistry. RSC Advances, 2013, 3, 8988.	1.7	79
131	An Access to Chiral $\hat{1}^2$ -Benzyl- $\hat{1}^3$ -butyrolactones and Its Application to the Synthesis of Enantiopure (+)-Secoisolariciresinol, (-)-Secoisolariciresinol, and (-)-Enterolactone. Synthesis, 2011, 2011, 1456-1464.	1.2	12
132	Stereoselective Total Synthesis of (+)-Dodoneine. Synthesis, 2010, 2010, 1649-1653.	1.2	16
133	Asymmetric Total Synthesis of Rugulactone, an α-Pyrone from Cryptocarya rugulosa. Synthesis, 2010, 2010, 2787-2793.	1.2	20
134	Straightforward Total Synthesis of 2-O-Feruloyl-l-malate, 2-O-Sinapoyl-l-malate and 2-O-5-Hydroxyferuloyl-l-malate. Synthesis, 2009, 2009, 3571-3578.	1.2	37
135	Imbalanced Lignin Biosynthesis Promotes the Sexual Reproduction of Homothallic Oomycete Pathogens. PLoS Pathogens, 2009, 5, e1000264.	2.1	80
136	A Short and Highly Diastereoselective Synthesis of Verbalactone. Synlett, 2007, 2007, 0451-0452.	1.0	2
137	Part 2. Mechanistic aspects of the reduction of <i>S</i> -alkyl-thionocarbonates in the presence of triethylborane and air. Beilstein Journal of Organic Chemistry, 2007, 3, 46.	1.3	22
138	A Comparison of a Radical Polymerization vs ROMP Matrix for Molecular Imprinting. Macromolecules, 2006, 39, 7859-7862.	2.2	11
139	Enantio- and Diastereoselective Allylmetalations:  An Easy and Efficient Access to the AB Spiroketal of Spongistatin. Organic Letters, 2006, 8, 3655-3657.	2.4	25
140	A Short and Efficient Synthesis of (-)-Diospongin A. Synlett, 2006, 2006, 3455-3456.	1.0	4
141	Desymmetrisation of Cyclopentadienylsilane by Asymmetric Cyclopropanation. European Journal of Organic Chemistry, 2003, 2003, 1069-1073.	1.2	18
142	Desymmetrization of Cyclopentadienylsilane by Asymmetric Cyclopropanation ChemInform, 2003, 34, no.	0.1	0
143	Aldehyde–alkene cyclizations via O-stannyl ketyl radicals using sugars as chiral auxiliaries. Tetrahedron: Asymmetry, 2003, 14, 2871-2874.	1.8	9
144	Highly Diastereoselective 5-Hexenyl Radical Cyclizations with Lewis Acids and Carbohydrate Scaffolds. Organic Letters, 2001, 3, 145-147.	2.4	34

#	Article	IF	CITATIONS
145	Valorization of Oleaginous "Oil-Bearing―Biomass Through the Biocatalytic Production of Sinapic Acid from Mustard Bran. SSRN Electronic Journal, 0, , .	0.4	O
146	From Biomass-Derived p-Hydroxycinnamic Acids to Novel Sustainable and Non-Toxic Phenolics-Based UV-Filters: A Multidisciplinary Journey. Frontiers in Chemistry, 0, 10, .	1.8	4