Christopher D Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/915986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	†They help us realise what we're actually gaining': The impact on undergraduates and teaching staff of displaying transferable skills badges. Active Learning in Higher Education, 2022, 23, 17-34.	5.4	9
2	â€ĩl don't Study Physics Anymore': a Cross-Institutional Australian Study on Factors Impacting the Persistence of Undergraduate Science Students. Research in Science Education, 2022, 52, 1565-1581.	2.3	4
3	"Every little thing that could possibly be provided helps†analysis of online first-year chemistry resources using the universal design for learning framework. Chemistry Education Research and Practice, 2022, 23, 385-407.	2.5	4
4	Implementing blended first-year chemistry in a developing country using online resources. Online Learning Journal, 2022, 26, .	1.8	2
5	The transition to first year chemistry: student, secondary and tertiary educator's perceptions of student preparedness. Chemistry Education Research and Practice, 2021, 22, 923-947.	2.5	4
6	Academics' perspectives of the teaching and development of generic employability skills in science curricula. Higher Education Research and Development, 2020, 39, 346-361.	2.9	32
7	Development and validation of an instrument to measure undergraduate chemistry students' critical thinking skills. Chemistry Education Research and Practice, 2020, 21, 62-78.	2.5	14
8	Evaluating the impact of reflecting on curriculum-embedded skill development: the experience of science undergraduates. Higher Education Research and Development, 2020, 39, 672-688.	2.9	8
9	The COVID Cohort: Student Transition to University in the Face of a Clobal Pandemic. Journal of Chemical Education, 2020, 97, 3381-3385.	2.3	31
10	â€~95% of the time things have been okay': the experience of undergraduate students in science disciplines with higher female representation. International Journal of Science Education, 2020, 42, 1430-1446.	1.9	7
11	Synthesis, Structure, and Solution Studies of Lithiated Allylic Phosphines and Phosphine Oxides. Organometallics, 2020, 39, 2080-2090.	2.3	2
12	Inquiry-, problem-, context- and industry- based laboratories: an investigation into the impact of large-scale, longitudinal redevelopment on student perceptions of teaching laboratories. International Journal of Science Education, 2020, 42, 451-468.	1.9	11
13	Gender differences in the Australian undergraduate STEM student experience: a systematic review. Higher Education Research and Development, 2020, 39, 1155-1168.	2.9	33
14	Gastrointestinal Manifestations and Associated Health Outcomes of COVID-19: A Brazilian Experience From the Largest South American Public Hospital. Clinics, 2020, 75, e2271.	1.5	19
15	Undergraduate recognition of curriculum-related skill development and the skills employers are seeking. Chemistry Education Research and Practice, 2019, 20, 68-84.	2.5	37
16	Forms of capital and agency as mediations in negotiating employability of international graduate migrants. Globalisation, Societies and Education, 2019, 17, 394-405.	2.6	49
17	Curtailing marking variation and enhancing feedback in large scale undergraduate chemistry courses through reducing academic judgement: a case study. Assessment and Evaluation in Higher Education, 2019, 44, 881-893.	5.6	3
18	Investigating student and staff perceptions of students' experiences in teaching laboratories through the lens of meaningful learning. Chemistry Education Research and Practice, 2019, 20, 187-196.	2.5	12

#	Article	IF	CITATIONS
19	Inquiry and industry inspired laboratories: the impact on students' perceptions of skill development and engagements. Chemistry Education Research and Practice, 2018, 19, 583-596.	2.5	20
20	â€~What do you think the aims of doing a practical chemistry course are?' A comparison of the views of students and teaching staff across three universities. Chemistry Education Research and Practice, 2018, 19, 463-473.	2.5	27
21	Beyond graduation: motivations and career aspirations of undergraduate chemistry students. Chemistry Education Research and Practice, 2017, 18, 457-471.	2.5	21
22	Evaluation of diagnostic tools that tertiary teachers can apply to profile their students' conceptions. International Journal of Science Education, 2017, 39, 565-586.	1.9	17
23	Simplifying metal-â€~ate' chemistry: formation and comprehensive characterisation of a homo-metallic amido lithiate complex. Dalton Transactions, 2016, 45, 10887-10890.	3.3	7
24	High resolution far infrared spectroscopy of HFC-134a using a collisional cooling cell adapted to a synchrotron source. Chemical Physics Letters, 2015, 634, 225-229.	2.6	4
25	Active space and basis set effects in <scp>CASPT</scp> 2 models of the 1,3â€butadieneâ€ethene cycloaddition and the 1,3â€butadiene dimerization. International Journal of Quantum Chemistry, 2015, 115, 989-1001.	2.0	4
26	Diagnosis of the Redox Levels of TCNQF ₄ Compounds Using Vibrational Spectroscopy. ChemPlusChem, 2014, 79, 962-972.	2.8	29
27	Alkali-Metal-Induced C–C Bond Cleavage and CH4Elimination in the Amido → Aza-Allyl Transformation of the (S)-N-α-(Methylbenzyl)benzylamido Anion. Organometallics, 2013, 32, 7509-7519.	2.3	13
28	Water ice nanoparticles: size and temperature effects on the mid-infrared spectrum. Physical Chemistry Chemical Physics, 2013, 15, 3630.	2.8	45
29	Synchrotron far-infrared spectroscopy of the two lowest fundamental modes of 1,1-difluoroethane. Molecular Physics, 2013, 111, 2198-2203.	1.7	2
30	Using formative feedback to identify and support first-year chemistry students with missing or misconceptions. A Practice Report. The International Journal of the First Year in Higher Education, 2013, 4, .	0.5	10
31	Synchrotron far infrared spectroscopy of the ground, <i>ν</i> 5, and <i>ν</i> 15 states of thiirane. Journal of Chemical Physics, 2012, 137, 084306.	3.0	11
32	Structural, vibrational, and rovibrational analysis of tetrafluoroethylene. Journal of Chemical Physics, 2012, 137, 214301.	3.0	10
33	Anion Rearrangements of Alkali Metal Complexes of the Chiral Amine (<i>S</i>)- <i>N</i> .α-(Methylbenzyl)phenylallylamine: Structural and Solution Insights. Organometallics, 2012, 31, 8135-8144.	2.3	14
34	THE FAR-INFRARED ROTATIONAL SPECTRUM OF ETHYLENE OXIDE. Astrophysical Journal, 2012, 753, 18.	4.5	25
35	SIZE AND TEMPERATURE DEPENDENCE IN THE FAR-IR SPECTRA OF WATER ICE PARTICLES. Astrophysical Journal, 2012, 758, 17.	4.5	37
36	High-resolution FTIR spectroscopy of the ν7 and ν8 bands of 1-phosphapropyne. Journal of Molecular Spectroscopy, 2012, 275, 9-14.	1.2	2

#	Article	IF	CITATIONS
37	High-resolution FTIR spectroscopy of the ν ₈ and Coriolis perturbation allowed ν ₁₂ bands of ketenimine. Physical Chemistry Chemical Physics, 2011, 13, 6793-6798.	2.8	18
38	High-resolution Fourier-transform infrared spectroscopy of the Coriolis coupled ground state and <i>μ2</i> 7 mode of ketenimine. Journal of Chemical Physics, 2011, 134, 234306.	3.0	15
39	High-resolution Fourier-transform infrared spectroscopy of the <i>μ2</i> 6 and Coriolis perturbation allowed <i>μ2</i> 10 modes of ketenimine. Journal of Chemical Physics, 2011, 135, 224306.	3.0	14
40	Overview of High-Resolution Infrared Measurement and Analysis for Atmospheric Monitoring of Halocarbons. Analytical Chemistry, 2010, 82, 7958-7964.	6.5	24
41	A Synthetic and Computational Investigation into the Direct Synthesis of ?-Hydroxymethylated Enones from ?-Keto Phosphonates. Australian Journal of Chemistry, 2009, 62, 720.	0.9	5
42	Optical and vibrational properties of 1,2-benzenedicarboxylic anhydride. Journal of Molecular Modeling, 2009, 15, 1119-1124.	1.8	8
43	A Spectroscopic Study of Nicotine Analogue 2-Phenylpyrrolidine (PPD) Using Resonant Two-Photon Ionization (R2PI), Microwave, and 2D NMR Techniques. Journal of the American Chemical Society, 2009, 131, 2638-2646.	13.7	9
44	Infrared spectroscopy of ozone and hydrogen chloride aerosols. Physical Chemistry Chemical Physics, 2009, 11, 7848.	2.8	10
45	IR spectroscopy of physical and chemical transformations in cold hydrogen chloride and ammonia aerosols. Physical Chemistry Chemical Physics, 2009, 11, 7853.	2.8	10
46	Ro-vibrational analysis of the ν9 and ν16 bands of R152a. Journal of Molecular Spectroscopy, 2008, 251, 256-260.	1.2	3
47	Structure determination of sec-butylbenzene rotamers by UV spectroscopy and ab initio calculations. Chemical Physics Letters, 2008, 463, 29-32.	2.6	2
48	High resolution synchrotron FTIR spectroscopy of the far infrared ν10 and ν11 bands of R152a (CH3CHF2). Chemical Physics Letters, 2008, 465, 203-206.	2.6	11
49	Infrared spectra of mass-selected Al+–(CH4)n n=1–6 clusters. Chemical Physics, 2008, 346, 176-181.	1.9	21
50	Resonant 2-photon ionization study of the conformation and the binding of water molecules to 2-phenylethanethiol (PhCH2CH2SH). Journal of Chemical Physics, 2008, 128, 164301.	3.0	8
51	The Al+–H2 cation complex: Rotationally resolved infrared spectrum, potential energy surface, and rovibrational calculations. Journal of Chemical Physics, 2007, 127, 164310.	3.0	31
52	Infrared spectra of the Li+–(H2)n (n=1–3) cation complexes. Journal of Chemical Physics, 2007, 126, 204309.	3.0	39
53	Interactions between the Chloride Anion and Aromatic Molecules:Â Infrared Spectra of the Cl-â^'C6H5CH3, Cl-â^'C6H5NH2and Cl-â^'C6H5OH Complexes. Journal of Physical Chemistry A, 2007, 111, 7322-7328.	2.5	9
54	Infrared spectra of Clâ^'–(C6H6)m= 1, 2. Chemical Physics Letters, 2006, 428, 18-22.	2.6	13

#	Article	IF	CITATIONS
55	Rotationally resolved infrared spectrum of the Li+–D2 cation complex. Journal of Chemical Physics, 2006, 125, 044310.	3.0	32
56	High resolution FTIR spectroscopy of pentafluoroethane: perturbations in the Coriolis doublet of ν4 and ν13. Journal of Molecular Spectroscopy, 2005, 230, 133-138.	1.2	6
57	High resolution FTIR spectroscopy of the ν1band of NSCI. Physical Chemistry Chemical Physics, 2005, 7, 483-486.	2.8	3
58	Infrared spectra of the Cl––C2H4 and Br––C2H4 anion dimers. Physical Chemistry Chemical Physics, 2005, 7, 3419.	2.8	7
59	Interplanar torsion in the S[sub 1]â† 6 [sub 0] electronic spectrum of jet cooled 1-phenylimidazole. Journal of Chemical Physics, 2004, 121, 12421.	3.0	9
60	Completing the picture in the rovibrational analysis of chlorodifluoromethane (CHClF2):ν3andν8. Molecular Physics, 2004, 102, 1687-1695.	1.7	15
61	Decongestion of high-resolution FTIR-spectra and assignment of CHF2CF3. Vibrational Spectroscopy, 2004, 36, 123-128.	2.2	10
62	High resolution FTIR spectroscopy of 1,1,1,2-tetrafluoroethane:. Journal of Molecular Spectroscopy, 2003, 218, 48-52.	1.2	15
63	Reading between the lines: Exposing underlying features of high resolution infrared spectra (CHClF2). Physical Chemistry Chemical Physics, 2003, 5, 1996.	2.8	18
64	Tetrafluoroethylene: high resolution FTIR spectroscopy. Physical Chemistry Chemical Physics, 2002, 4, 4849-4854.	2.8	10
65	High-resolution FTIR spectroscopy of chlorodifluoromethane: $1\frac{1}{22}$ and $1\frac{1}{27}$. Chemical Physics, 2002, 279,	1.9	15