Stephen DiNardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159464/publications.pdf

Version: 2024-02-01

47 papers

5,455 citations

30 h-index 214527 47 g-index

54 all docs

54 docs citations

54 times ranked

3290 citing authors

#	Article	IF	CITATIONS
1	arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 2000, 407, 527-530.	13.7	794
2	Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell, 1982, 31, 43-51.	13.5	479
3	Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature, 1987, 326, 414-416.	13.7	427
4	Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature, 1988, 332, 604-609.	13.7	404
5	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	6.0	295
6	Zfh-1 Controls Somatic Stem Cell Self-Renewal in the Drosophila Testis and Nonautonomously Influences Germline Stem Cell Self-Renewal. Cell Stem Cell, 2008, 3, 44-54.	5.2	280
7	Wg/Wnt Signal Can Be Transmitted through Arrow/LRP5,6 and Axin Independently of Zw3/Gsk3β Activity. Developmental Cell, 2003, 4, 407-418.	3.1	278
8	Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature, 1991, 352, 404-410.	13.7	270
9	Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature, 2000, 407, 754-757.	13.7	241
10	Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nature Cell Biology, 2010, 12, 806-811.	4.6	229
11	Drosophila hedgehog acts as a morphogen in cellular patterning. Cell, 1994, 76, 449-460.	13.5	217
12	The making of a maggot: patterning the Drosophila embryonic epidermis. Current Opinion in Genetics and Development, 1994, 4, 529-534.	1.5	130
13	Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell, 2006, 5, 297-304.	3.0	126
14	A somatic role for eyes absent (eya) and sine oculis (so) in drosophila spermatocyte development. Developmental Biology, 2003, 258, 117-128.	0.9	118
15	Drosophila wingless generates cell type diversity among engrailed expressing cells. Nature, 1992, 360, 347-350.	13.7	115
16	Novel regulators revealed by profiling Drosophila testis stem cells within their niche. Developmental Biology, 2006, 294, 246-257.	0.9	89
17	Divide and conquer: pattern formation in Drosophila embryonic epidermis. Trends in Genetics, 2001, 17, 574-579.	2.9	86
18	Endocytic trafficking of Wingless and its receptors, Arrow and DFrizzled-2, in the Drosophila wing. Developmental Biology, 2006, 293, 268-283.	0.9	74

#	Article	IF	Citations
19	<i>fumble</i> Encodes a Pantothenate Kinase Homolog Required for Proper Mitosis and Meiosis in <i>Drosophila melanogaster</i> Cenetics, 2001, 157, 1267-1276.	1.2	68
20	Somatic Cell Encystment Promotes Abscission in Germline Stem Cells following a Regulated Block in Cytokinesis. Developmental Cell, 2015, 34, 192-205.	3.1	64
21	Establishing Parasegments in Drosophila Embryos: Roles of the odd-skipped and naked Genes. Developmental Biology, 1995, 169, 295-308.	0.9	62
22	<i>lines</i> and <i>bowl</i> affect the specification of cyst stem cells and niche cells in the <i>Drosophila</i> testis. Development (Cambridge), 2011, 138, 1687-1696.	1.2	53
23	<i>dachsous</i> and <i>frizzled</i> contribute separately to planar polarity in the <i>Drosophila</i> ventral epidermis. Development (Cambridge), 2011, 138, 2751-2759.	1.2	49
24	Actomyosin contractility and Discs large contribute to junctional conversion in guiding cell alignment within the <i>Drosophila</i> embryonic epithelium. Development (Cambridge), 2010, 137, 1385-1394.	1.2	44
25	The Drumstick/Lines/Bowl regulatory pathway links antagonistic Hedgehog and Wingless signaling inputs to epidermal cell differentiation. Genes and Development, 2005, 19, 709-718.	2.7	43
26	Planar polarization of the denticle field in the Drosophila embryo: Roles for Myosin II (Zipper) and Fringe. Developmental Biology, 2006, 297, 323-339.	0.9	40
27	Tissue- and stage-specific modulation of Wingless signaling by the segment polarity gene <i>lines</i> Genes and Development, 2000, 14, 1364-1376.	2.7	40
28	magu is required for germline stem cell self-renewal through BMP signaling in the Drosophila testis. Developmental Biology, 2011, 357, 202-210.	0.9	39
29	Distinct Signals Generate Repeating Striped Pattern in the Embryonic Parasegment. Molecular Cell, 2001, 7, 151-160.	4.5	36
30	A novel eIF4G homolog, Off-schedule, couples translational control to meiosis and differentiation in <i>Drosophila</i> spermatocytes. Development (Cambridge), 2007, 134, 2851-2861.	1.2	36
31	The endoderm specifies the mesodermal niche for the germline in <i>Drosophila</i> via Delta-Notch signaling. Development (Cambridge), 2011, 138, 1259-1267.	1.2	33
32	Mutations in Nop60B, the Drosophila homolog of human Dyskeratosis congenita 1, affect the maintenance of the germ-line stem cell lineage during spermatogenesis. Developmental Biology, 2003, 253, 189-199.	0.9	20
33	Non-cell-autonomous control of denticle diversity in the Drosophila embryo. Development (Cambridge), 2010, 137, 1395-1404.	1.2	20
34	Molecular cloning and genetic mapping of the DNA topoisomerase II gene of Saccharomyces cerevisiae. Gene, 1986, 42, 193-199.	1.0	17
35	Serrate–Notch signaling defines the scope of the initial denticle field by modulating EGFR activation. Developmental Biology, 2005, 286, 415-426.	0.9	15
36	Live imaging reveals hub cell assembly and compaction dynamics during morphogenesis of the Drosophila testis niche. Developmental Biology, 2019, 446, 102-118.	0.9	14

#	Article	IF	CITATIONS
37	Diminished Jak/STAT Signaling Causes Early-Onset Aging Defects in Stem Cell Cytokinesis. Current Biology, 2019, 29, 256-267.e3.	1.8	12
38	Drosophila Dachsous and Fat polarize actin-based protrusions over a restricted domain of the embryonic denticle field. Developmental Biology, 2013, 383, 285-294.	0.9	10
39	Traffic jam functions in a branched pathway from Notch activation to niche cell fate. Development (Cambridge), 2015, 142, 2268-77.	1.2	8
40	Multiple feedback mechanisms fine-tune Rho signaling to regulate morphogenetic outcomes. Journal of Cell Science, 2019, 132, .	1.2	7
41	Dissection and Live-Imaging of the Late Embryonic Drosophila Gonad. Journal of Visualized Experiments, 2020, , .	0.2	5
42	Visceral mesoderm signaling regulates assembly position and function of the Drosophila testis niche. Developmental Cell, 2022, 57, 1009-1023.e5.	3.1	5
43	Asymmetrically deployed actomyosin-based contractility generates a boundary between developing leg segments in Drosophila. Developmental Biology, 2017, 429, 165-176.	0.9	4
44	ISOLATION OF AN E. COLI DNA TOPOISOMERASE I MUTANT. , 1980, , 833-837.		3
45	Dissection and Live-Imaging of the Late Embryonic Drosophila Gonad. Journal of Visualized Experiments, 2020, , .	0.2	2
46	DEVELOPMENT: Staying a Boy Forever. Science, 2001, 294, 2495-2497.	6.0	1
47	Actomyosin contractility and Discs large contribute to junctional conversion in guiding cell alignment within the Drosophila embryonic epithelium. Journal of Cell Science, 2010, 123, e1-e1.	1.2	O