
J A Reynoso-HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Designing a Frequency Multiplier Based on Conventional <i>X</i> -Parameters. IEEE Microwave and Wireless Components Letters, 2023, 33, 63-65.	3.2	2
2	Experimental Investigation of Resistive–Reactive Class-J Mode Using Time-Domain Low-Frequency Active Harmonic Load–Pull Measurements. IEEE Microwave and Wireless Components Letters, 2022, 32, 96-99.	3.2	6
3	Advances in Microwave Large-Signal Metrology: From Vector-Receiver Load-Pull to Vector Signal Network Analyzer and Time-Domain Load-Pull Implementations (Invited Paper). Electronics (Switzerland), 2022, 11, 1114.	3.1	2
4	A nonlinear empirical I/V model for <scp>GaAs</scp> and <scp>GaN FETs</scp> suitable to design power amplifiers. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22552.	1.2	8
5	Time-Domain Characterization and Linearization of a Dual-Input Power Amplifier Using a Vector Network Analyzer as the Receiver. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2386-2398.	4.6	9
6	Sensitivity of FET parasitic elements extraction due to uncertainty on TRM calibration structures. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22889.	1.2	0
7	Transmission Line Impedance Characterization Using an Uncalibrated Vector Network Analyzer. IEEE Microwave and Wireless Components Letters, 2020, 30, 528-530.	3.2	4
8	Design and Simulation of an RF Feedback Oscillator Circuit Using Conventional X-Parameters. IEEE Microwave and Wireless Components Letters, 2020, 30, 685-688.	3.2	4
9	Optimal Two-Way Hybrid Doherty-Outphasing Power Amplifier. , 2020, , .		8
10	Calibrated Digital Predistortion Using a Vector Network Analyzer as the Receiver. , 2019, , .		9
11	An empirical nonlinear RF model for CMOS fet suitable for modeling the breakdown region. Microwave and Optical Technology Letters, 2017, 59, 563-567.	1.4	0
12	Improved Envelope Load Pull system for high power transistors characterization. , 2016, , .		0
13	Second harmonic suppression band-pass filter based on a modified 1storder microstrip coupled line. , 2016, , .		3
14	A novel configurable FPGA architecture for hardware implementation of multilayer feedforward neural networks suitable for digital pre-distortion technique. , 2016, , .		3
15	FPGA-based test bed for measurement of AM/AM and AM/PM distortion and modeling memory effects in RF PAs. The Integration VLSI Journal, 2016, 52, 291-300.	2.1	1
16	A new method for extracting R <inf>i</inf> and R <inf>gd</inf> of the intrinsic transistor model of GaN HEMT based on extrema points of intrinsic Y-parameters. , 2015, , .		0
17	FPGA-based design and implementation of a phase detector to correct the I/Q imbalance. , 2015, , .		0
18	Application of the <scp>NARX</scp> neural network as a digital predistortion technique for linearizing microwave power amplifiers. Microwave and Optical Technology Letters, 2015, 57, 2137-2142.	1.4	9

#	Article	IF	CITATIONS
19	Test bed for low-cost measurement of AM/AM and AM/PM effects in RF PAs based on FPGA. , 2015, , .		Ο
20	The impact of knowing the impedance of the lines used in the TRL calibration on the load-pull characterization of power transistors. , 2015, , .		2
21	Modeling memory effects in RF power amplifiers applied to a digital pre-distortion algorithm and emulated on a DSP-FPGA board. The Integration VLSI Journal, 2015, 49, 49-64.	2.1	9
22	Generalized Theory of the Thru-Reflect-Match Calibration Technique. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1693-1699.	4.6	16
23	On the implementation of the LZZ calibration technique in the S-parameters measurement of devices mounted in test fixtures. , 2015, , .		Ο
24	Experimental study of the capabilities of the Real-Valued NARX neural network for behavioral modeling of multi-standard RF power amplifier. , 2015, , .		6
25	X-parameters: The new tendency in the characterization of nonlinear RF devices. , 2014, , .		Ο
26	LZZM: An extension of the theory of the LZZ calibration technique. , 2014, , .		2
27	Enhanced RF Characteristics of a 0.5 μm High Voltage nMOSFET (HVMOS) in a Standard CMOS Technology. Journal of Applied Research and Technology, 2014, 12, 471-476.	0.9	0
28	A digital predistortion technique based on a NARX network to linearize GaN class F power amplifiers. , 2014, , .		5
29	Microwaves research collaboration between Cinvestav-GDL and CICESE, two research centers in Mexico. , 2014, , .		2
30	R&D in Latin America: RF and Microwave Research in Latin America. IEEE Microwave Magazine, 2014, 15, 97-103.	0.8	4
31	Artificial Neural Network Model of SOS-MOSFETs Based on Dynamic Large-Signal Measurements. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 491-501.	4.6	34
32	Vector Network Analyzer Calibration Using a Line and Two Offset Reflecting Loads. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3417-3423.	4.6	11
33	On the determination of neural network based non-linear constitutive relations for quasi-static GaN FET models. , 2013, , .		1
34	Fast second harmonic injection characterization for efficiency enhancement of RF power amplifiers. , 2013, , .		4
35	A Simple and Reliable Method to Extract The Electrical Equivalent Circuits of CMOS pads. Microwave and Optical Technology Letters, 2013, 55, 3033-3037.	1.4	3
36	Flexible test bed for the behavioural modelling of power amplifiers. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 33, 355-375.	0.9	11

#	Article	IF	CITATIONS
37	A simple and reliable technique to characterize amplitude to phase modulation distortion for high-frequency amplifiers and nonlinear devices. Review of Scientific Instruments, 2013, 84, 084708.	1.3	5
38	A simple procedure to synthesize input and output matching networks with short stub for class F ^{−1} PAs. , 2013, , .		2
39	What can the ABCD parameters tell us about the TRL?. , 2012, , .		9
40	A neural network approach to smooth calibrated data corrupted from switching errors. , 2012, , .		0
41	Modeling the I-V Curves and Its Derivatives of Microwave Transistors Using Neural Networks. IEEE Microwave and Wireless Components Letters, 2012, 22, 468-470.	3.2	6
42	On-wafer CMOS transistors de-embedding method using two transmission lines of different lengths. , 2012, , .		5
43	A method for determining the characteristic impedance of transmission lines embedded in transitions. AEU - International Journal of Electronics and Communications, 2012, 66, 185-188.	2.9	6
44	A simple procedure for characterizing line-stretcher phase shifters. , 2011, , .		0
45	An improved two-tier L-L method for characterizing symmetrical microwave test fixtures. Measurement: Journal of the International Measurement Confederation, 2011, 44, 1491-1498.	5.0	12
46	An empirical I-V nonlinear model suitable for GaN FET class F PA design. Microwave and Optical Technology Letters, 2011, 53, 1256-1259.	1.4	8
47	Enhancement of the rejection bandwidth of microwave oupled lines filters using spurline structures. Microwave and Optical Technology Letters, 2011, 53, 2893-2896.	1.4	2
48	A GaN class-F PA with 600 MHz bandwidth and 62.5% of PAE suitable for WiMAX frequencies. , 2010, , .		5
49	A straightforward method to determine the parasitic gate resistance of GaN FET. , 2009, , .		8
50	Two-tier L-L de-embedding method for S-parameters measurements of devices mounted in test fixture. , 2009, , .		5
51	Advances in Linear Modeling of Microwave Transistors. IEEE Microwave Magazine, 2009, 10, 100, 102-111, 146.	0.8	31
52	Fabrication and Characterization of Coplanar Waveguides on Silicon Using a Combination of SiO\$_{2}\$ and SRO\$_{20}\$. IEEE Transactions on Components and Packaging Technologies, 2008, 31, 678-682.	1.3	4
53	A new method for determining the characteristic impedance Z <inf>c</inf> of transmission lines embedded in symmetrical transitions. , 2008, , .		0
54	An Extension of the Classical Method to Design High Efficiency Microwave Class E PAs. IEEE Microwave and Wireless Components Letters, 2007, 17, 540-542.	3.2	3

#	Article	IF	CITATIONS
55	A new multiline TRL calibration technique implemented with a variable phase shifter. , 2007, , .		2
56	A New and Better Method for Extracting the Parasitic Elements of On-Wafer GaN Transistors. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	11
57	Influence of losses and dispersion of the reference line of LRM on the parasitic and intrinsic element values of on-wafer transistors. Microwave and Optical Technology Letters, 2006, 48, 701-705.	1.4	1
58	Modeling the I-V characteristics of the power microwave FETs with the Angelov model using pulse measurements. Microwave and Optical Technology Letters, 2006, 48, 1046-1050.	1.4	14
59	Impact of the positive and negative optical response of field-effect transistors on the frequency of optically controlled microwave oscillators. Microwave and Optical Technology Letters, 2006, 48, 1558-1561.	1.4	0
60	DC or pulse I(V) measurements to simulate transmission line class E power amplifiers. Microwave and Optical Technology Letters, 2006, 48, 1886-1890.	1.4	0
61	An improved multiline TRL method. , 2006, , .		11
62	Analytical Model and Parameter Extraction to Account for the Pad Parasitics in RF-CMOS. IEEE Transactions on Electron Devices, 2005, 52, 1335-1342.	3.0	68
63	On-wafer LRM calibration technique using a non-reflecting lossy line of arbitrary length. , 2004, , .		9
64	Theoretical study of the effects of the parasitic resistances, R/sub D and R/sub s/, on the voltage and current waveform in the transmission line class E PA. , 2004, , .		0
65	Unified method for determining the complex propagation constant of reflecting and nonreflecting transmission lines. IEEE Microwave and Wireless Components Letters, 2003, 13, 351-353.	3.2	89
66	Influence of the SRO as passivation layer on the microwave attenuation losses of the CPWs fabricated on HR-Si. IEEE Microwave and Wireless Components Letters, 2003, 13, 508-510.	3.2	13
67	Reliable method for computing the phase shift of multiline LRL calibration technique. IEEE Microwave and Wireless Components Letters, 2002, 12, 395-397.	3.2	13
68	A Straightforward De-Embedding Method for Devices Embedded in Test Fixtures. , 2001, , .		7
69	Broadband Determination of Two-Port Transmission (S21, S12) Parameters of PHEMT's Embedded in Transmission Lines. , 2000, , .		5
70	New experimental observations on the electrical characteristics of the Al/SRO/Si diode, and annealing effects. Materials Science in Semiconductor Processing, 1999, 2, 173-183.	4.0	7
71	Study on the Al/silicon rich oxide/Si structure as a surge suppressor, DC, frequency response and modeling. Microelectronics Journal, 1999, 30, 855-862.	2.0	8
72	An improved model for chip carrier at microwave frequencies. Microwave and Optical Technology Letters, 1999, 20, 233-236.	1.4	0

#	Article	IF	CITATIONS
73	DC and RF techniques for computing the series resistance of the equivalent electrical circuit for semiconductor lasers. Microwave and Optical Technology Letters, 1999, 20, 258-261.	1.4	0
74	An improved method for the wave propagation constant ? estimation in broadband uniform millimeter-wave transmission line. Microwave and Optical Technology Letters, 1999, 22, 268-271.	1.4	49
75	Study on the Al/silicon rich oxide/Si structure as a surge suppresser. , 1997, , .		0
76	The conduction properties of the silicon/off-stoichiometry-SiO2 diode. Solid-State Electronics, 1996, 39, 637-644.	1.4	32
77	Full RF characterization for extracting the small-signal equivalent circuit in microwave FETs. IEEE Transactions on Microwave Theory and Techniques, 1996, 44, 2625-2633.	4.6	38
78	Deep level characterisation in GaAs FETs by means of the frequency dispersion of the output impedance. Electronics Letters, 1995, 31, 677.	1.0	11
79	Output conductance frequency dispersion and low-frequency noise in HEMTs and MESFETs. IEEE Transactions on Microwave Theory and Techniques, 1989, 37, 1478-1481.	4.6	27
80	Gallium arsenide fieldâ€effect transistor by close spaced vapor transport epitaxy. Applied Physics Letters, 1987, 51, 2004-2006.	3.3	9
81	Characterization of growth and properties of spray-deposited SnO2 films. Journal of Crystal Growth, 1984, 68, 671-676.	1.5	10