Jian Zi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159401/publications.pdf

Version: 2024-02-01

		186265	123424
74	3,828	28	61
papers	citations	h-index	g-index
78	78	78	4421
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bound states in the continuum based on the total internal reflection of Bloch waves. National Science Review, 2023, 10 , .	9.5	11
2	Single-Fed Triple-Mode Wideband Circularly Polarized Microstrip Antennas Using Characteristic Mode Analysis. IEEE Transactions on Antennas and Propagation, 2022, 70, 846-855.	5.1	50
3	Edible Amorphous Structural Color. Advanced Optical Materials, 2022, 10, .	7.3	7
4	Unfolded band structures of photonic quasicrystals and moir \tilde{A} \otimes superlattices. Physical Review B, 2022, 105, .	3.2	3
5	Momentum-space imaging spectroscopy for the study of nanophotonic materials. Science Bulletin, 2021, 66, 824-838.	9.0	18
6	Phase characterisation of metalenses. Light: Science and Applications, 2021, 10, 52.	16.6	44
7	Photonic-dispersion neural networks for inverse scattering problems. Light: Science and Applications, 2021, 10, 154.	16.6	12
8	Polarization Singularities of Photonic Quasicrystals in Momentum Space. Physical Review Letters, 2021, 127, 043901.	7.8	22
9	Controlling fluctuations in small structures: Hidden information in the noise. Physical Review B, 2021, 104, .	3.2	2
10	Ways to achieve efficient non-local vortex beam generation. Nanophotonics, 2021, 10, 4297-4304.	6.0	7
11	Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array. IEEE Access, 2021, 9, 68127-68138.	4.2	6
12	PT Symmetry Induced Rings of Lasing Threshold Modes Embedded with Discrete Bound States in the Continuum. Chinese Physics Letters, 2021, 38, 084203.	3.3	10
13	Shifting beams at normal incidence via controlling momentum-space geometric phases. Nature Communications, 2021, 12, 6046.	12.8	25
14	Realizing Generalized Brewster Effect by Generalized Kerker Effect. Physical Review Applied, 2021, 16, .	3.8	11
15	Fast Water Waves in Stationary Surface Disk Arrays. Physical Review Letters, 2021, 127, 254501.	7.8	10
16	Ultrawideband, Wide Scanning Stripline-Fed Tightly Coupled Array Antenna Based on Parallel-Dipole Elements. Sensors, 2020, 20, 5065.	3.8	2
17	Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light: Science and Applications, 2020, 9, 148.	16.6	54
18	Coexistence of a new type of bound state in the continuum and a lasing threshold mode induced by PT symmetry. Science Advances, 2020, 6, eabc1160.	10.3	48

#	Article	IF	Citations
19	Transmissionâ€Type Optical Modulator Based on Graphene Plasmonic Resonator Integrated with Offâ€Resonant Au Structure. Advanced Optical Materials, 2020, 8, 2000264.	7.3	12
20	Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nature Photonics, 2020, 14, 623-628.	31.4	244
21	Vector Exceptional Points with Strong Superchiral Fields. Physical Review Letters, 2020, 124, 083901.	7.8	32
22	Manipulating bandwidth of light absorption at critical coupling: An example of graphene integrated with dielectric photonic structure. Physical Review B, 2019, 100, .	3.2	42
23	Observation of bound states in the continuum in the dimerized chain. Physical Review A, 2019, 100, .	2.5	18
24	Circularly Polarized States Spawning from Bound States in the Continuum. Physical Review Letters, 2019, 123, 116104.	7.8	165
25	Observing vortex polarization singularities at optical band degeneracies. Physical Review B, 2019, 99, .	3.2	31
26	Amplified Spontaneous Emission Realized by Cogrowing Large/Small Grains with Selfâ€Passivating Defects and Aligning Transition Dipoles. Advanced Optical Materials, 2019, 7, 1900345.	7.3	19
27	Scattering of electromagnetic waves from a cone with conformal mapping: Application to scanning near-field optical microscope. Physical Review B, 2018, 97, .	3.2	28
28	Graphene Plasmonic Resonances: Dynamical Tuning of Graphene Plasmonic Resonances byÂUltraviolet Illuminations (Advanced Optical Materials 6/2018). Advanced Optical Materials, 2018, 6, 1870023.	7.3	1
29	Dynamical Tuning of Graphene Plasmonic Resonances byÂUltraviolet Illuminations. Advanced Optical Materials, 2018, 6, 1701081.	7.3	14
30	Observation of Polarization Vortices in Momentum Space. Physical Review Letters, 2018, 120, 186103.	7.8	168
31	Gate Switching of Ultrafast Photoluminescence in Graphene. Nano Letters, 2018, 18, 7985-7990.	9.1	23
32	Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers. Physical Review Applied, 2018, 10, .	3.8	21
33	Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nature Photonics, 2018, 12, 430-436.	31.4	194
34	From topologically protected coherent perfect reflection to bound states in the continuum. Physical Review B, 2018, 98, .	3.2	36
35	Intracellular and <i>in Vivo</i> Cyanide Mapping via Surface Plasmon Spectroscopy of Single Au–Ag Nanoboxes. Analytical Chemistry, 2017, 89, 2583-2591.	6.5	20
36	Electromagnetic scattering laws in Weyl systems. Nature Communications, 2017, 8, 1388.	12.8	34

#	Article	IF	Citations
37	Using active gain to maximize light absorption. Physical Review B, 2017, 96, .	3.2	13
38	Combating rituximab resistance by inducing ceramide/lysosome-involved cell death through initiation of CD20-TNFR1 co-localization. Oncolmmunology, 2016, 5, e1143995.	4.6	9
39	Extremely strong bipolar optical interactions in paired graphene nanoribbons. Physical Chemistry Chemical Physics, 2016, 18, 8561-8569.	2.8	6
40	Photonics: Using Cuttlefish Ink as an Additive to Produce ÂNonâ€iridescent Structural Colors of High Color Visibility (Adv. Mater. 32/2015). Advanced Materials, 2015, 27, 4666-4666.	21.0	2
41	Using Cuttlefish Ink as an Additive to Produce ÂNonâ€iridescent Structural Colors of High Color Visibility. Advanced Materials, 2015, 27, 4719-4724.	21.0	215
42	Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator. Physical Review Letters, 2015, 115, 023903.	7.8	34
43	Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering. Scientific Reports, 2015, 5, 7948.	3.3	6
44	Tunable terahertz radiation from graphene induced by moving electrons. Physical Review B, 2014, 89, .	3.2	57
45	Coherent fluorescence emission by using hybrid photonic–plasmonic crystals. Laser and Photonics Reviews, 2014, 8, 717-725.	8.7	24
46	Structural origin of sexual dichromatic coloration and luster in the beetle Goliathus cacicus. Science Bulletin, 2012, 57, 3211-3217.	1.7	3
47	Slow light with low group-velocity dispersion at the edge of photonic graphene. Physical Review A, 2011, 84, .	2.5	17
48	Localized surface plasmon resonance of nanoporous gold. Applied Physics Letters, 2011, 98, .	3.3	135
49	Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding. Physical Review A, $2011, 83, .$	2.5	26
50	Optical resonances in tubular microcavities with subwavelength wall thicknesses. Applied Physics Letters, 2011, 99, 211104.	3.3	18
51	A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Research, 2010, 3, 807-812.	10.4	66
52	Hyper-interface, the bridge between radiative wave and evanescent wave. Applied Physics Letters, 2010, 96, 113507.	3.3	20
53	Scattering focusing and localized surface plasmons in a single Ag nanoring. Applied Physics Letters, 2010, 97, .	3.3	17
54	Graded index photonic hole: Analytical and rigorous full wave solution. Physical Review B, 2010, 82, .	3.2	33

#	Article	IF	CITATIONS
55	Macroporous oxide structures with short-range order and bright structural coloration: a replication from parrot feather barbs. Journal of Materials Chemistry, 2010, 20, 90-93.	6.7	23
56	Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays. Physical Review A, 2009, 79 , .	2.5	38
57	Broadband absorption enhancement in anisotropic metamaterials by mirror reflections. Physical Review B, 2009, 80, .	3.2	31
58	All-angle zero reflection at metamaterial surfaces. Applied Physics Letters, 2008, 93, .	3.3	16
59	Fabrication and Characterization of Potassium Ion-Selective Electrode Based on Porous Silicon. IEEE Sensors Journal, 2007, 7, 38-42.	4.7	7
60	Microwave Bandgap in Multilayer Ceramic Structures. Journal of the American Ceramic Society, 2006, 89, 1087-1090.	3.8	1
61	Tunable negative refraction in a two-dimensional active magneto-optical photonic crystal. Physical Review B, 2005, 71, .	3.2	22
62	Negative refraction of acoustic waves in two-dimensional sonic crystals. Physical Review B, 2005, 72, .	3.2	91
63	Coloration strategies in peacock feathers. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12576-12578.	7.1	478
64	Ferroelectric inverse opals with electrically tunable photonic band gap. Applied Physics Letters, 2003, 83, 4704-4706.	3.3	94
65	Abnormal anti-Stokes Raman scattering of carbon nanotubes. Physical Review B, 2002, 66, .	3.2	22
66	Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures. Applied Physics Letters, 2002, 80, 4291-4293.	3.3	192
67	Defect Structures for Fe ³⁺ , Mn ²⁺ , and Ni ³⁺ Impurities in Wuritzite GaN Crystals. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2001, 56, 473-477.	1.5	13
68	Large frequency range of negligible transmission in one-dimensional photonic quantum well structures. Applied Physics Letters, 1998, 73, 2084-2086.	3.3	136
69	Lattice dynamics of GaN/AlN superlattices. Journal of Applied Physics, 1997, 82, 622-627.	2.5	14
70	Zone-center optical phonons in wurtzite GaN and AlN. Journal of Applied Physics, 1997, 82, 4693-4695.	2.5	26
71	Raman shifts in Si nanocrystals. Applied Physics Letters, 1996, 69, 200-202.	3.3	403
72	Strain Effects on the Band Structures of GaN. Physica Status Solidi (B): Basic Research, 1995, 192, 95-100.	1.5	8

#	Article	lF	CITATIONS
73	Theoretical study of structures and growth of strained Si/Ge superlattices. Applied Physics Letters, 1990, 57, 165-167.	3.3	17
74	Porous silicon-based potassium ion selective electrode. , 0, , .		0