Vincent M Christoffels

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/9159329/vincent-m-christoffels-publications-by-citations.pdf$

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 169
 10,200
 55
 98

 papers
 citations
 h-index
 g-index

 184
 11,933
 9.2
 6.05

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
169	Cardiac chamber formation: development, genes, and evolution. <i>Physiological Reviews</i> , 2003 , 83, 1223-	67 47.9	526
168	Chamber formation and morphogenesis in the developing mammalian heart. <i>Developmental Biology</i> , 2000 , 223, 266-78	3.1	399
167	Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. <i>Nature Genetics</i> , 2013 , 45, 1044-9	36.3	345
166	Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. <i>Genes and Development</i> , 2007 , 21, 1098-112	12.6	290
165	Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. <i>Circulation Research</i> , 2007 , 101, 902-9	15.7	289
164	Lineage and morphogenetic analysis of the cardiac valves. Circulation Research, 2004, 95, 645-54	15.7	289
163	Molecular pathway for the localized formation of the sinoatrial node. <i>Circulation Research</i> , 2007 , 100, 354-62	15.7	284
162	Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. <i>Journal of Histochemistry and Cytochemistry</i> , 2001 , 49, 1-8	3.4	282
161	Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. <i>Genes and Development</i> , 2002 , 16, 1234-46	12.6	281
160	The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. <i>Cardiovascular Research</i> , 2004 , 62, 489-99	9.9	266
159	Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. <i>Circulation Research</i> , 2006 , 98, 1555-63	15.7	243
158	T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. <i>Developmental Dynamics</i> , 2004 , 229, 763-70	2.9	222
157	Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. <i>Circulation Research</i> , 2009 , 104, 388-97	15.7	217
156	Tbx18 and the fate of epicardial progenitors. <i>Nature</i> , 2009 , 458, E8-9; discussion E9-10	50.4	211
155	Development of the pacemaker tissues of the heart. Circulation Research, 2010, 106, 240-54	15.7	202
154	Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. <i>Development</i> (Cambridge), 2005 , 132, 2697-707	6.6	168
153	Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. <i>Circulation Research</i> , 2008 , 102, 1340-9	15.7	153

(2010-2012)

152	Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. <i>Journal of Clinical Investigation</i> , 2012 , 122, 2519-30	15.9	143
151	A common genetic variant within SCN10A modulates cardiac SCN5A expression. <i>Journal of Clinical Investigation</i> , 2014 , 124, 1844-52	15.9	132
150	The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. <i>Circulation Research</i> , 2009 , 104, 1267-74	15.7	130
149	A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. <i>Circulation Research</i> , 2008 , 102, 1433-42	15.7	127
148	Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. <i>Developmental Biology</i> , 2000 , 224, 263-74	3.1	126
147	Identification and functional characterization of cardiac pacemaker cells in zebrafish. <i>PLoS ONE</i> , 2012 , 7, e47644	3.7	126
146	The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. <i>Cardiovascular Research</i> , 2010 , 87, 92-101	9.9	120
145	Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias. <i>Circulation Research</i> , 2009 , 104, 19-31	15.7	119
144	Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2013 , 1832, 2403-13	6.9	110
143	Development of the cardiac conduction system: why are some regions of the heart more arrhythmogenic than others?. <i>Circulation: Arrhythmia and Electrophysiology</i> , 2009 , 2, 195-207	6.4	110
142	T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. <i>Cardiovascular Research</i> , 2012 , 94, 439-49	9.9	109
141	Gene and cluster-specific expression of the Iroquois family members during mouse development. <i>Mechanisms of Development</i> , 2001 , 107, 169-74	1.7	108
140	The formation and function of the cardiac conduction system. <i>Development (Cambridge)</i> , 2016 , 143, 197	' -2 .160	107
139	Tbx20 interacts with smads to confine tbx2 expression to the atrioventricular canal. <i>Circulation Research</i> , 2009 , 105, 442-52	15.7	102
138	Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. <i>Trends in Cardiovascular Medicine</i> , 2004 , 14, 301-7	6.9	102
137	Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. <i>Circulation</i> , 2011 , 123, 1125-35	16.7	100
136	An interactive three-dimensional digital atlas and quantitative database of human development. <i>Science</i> , 2016 , 354,	33.3	98
135	Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. <i>Circulation Research</i> , 2010 , 107, 728-36	15.7	98

134	Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. <i>Cellular and Molecular Life Sciences</i> , 2012 , 69, 1377-89	10.3	93
133	The heart-forming fields: one or multiple?. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2007 , 362, 1257-65	5.8	93
132	Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E154-63	11.5	92
131	Expression and regulation of the atrial natriuretic factor encoding gene Nppa during development and disease. <i>Cardiovascular Research</i> , 2005 , 67, 583-93	9.9	92
130	Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. <i>Hepatology</i> , 2009 , 49, 969-78	11.2	86
129	Evolution and development of the building plan of the vertebrate heart. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2013 , 1833, 783-94	4.9	83
128	Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. <i>Science Translational Medicine</i> , 2016 , 8, 354ra115	17.5	79
127	52 Genetic Loci Influencing Myocardial Mass. <i>Journal of the American College of Cardiology</i> , 2016 , 68, 1435-1448	15.1	76
126	Presence of functional sarcoplasmic reticulum in the developing heart and its confinement to chamber myocardium. <i>Developmental Biology</i> , 2000 , 223, 279-90	3.1	75
125	Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. <i>Cardiovascular Research</i> , 2003 , 58, 399-409	9.9	74
124	Identifying the evolutionary building blocks of the cardiac conduction system. PLoS ONE, 2012, 7, e4423	3 3 .7	74
123	Tbx1 coordinates addition of posterior second heart field progenitor cells to the arterial and venous poles of the heart. <i>Circulation Research</i> , 2014 , 115, 790-9	15.7	72
122	Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43. <i>Cardiovascular Research</i> , 2008 , 78, 485-93	9.9	70
121	HAND2 targets define a network of transcriptional regulators that compartmentalize the early limb bud mesenchyme. <i>Developmental Cell</i> , 2014 , 31, 345-357	10.2	69
120	GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. <i>Nature Communications</i> , 2014 , 5, 3680	17.4	68
119	Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter. <i>Circulation Research</i> , 2009 , 105, 61-9	15.7	67
118	Defective Tbx2-dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice. <i>Journal of Clinical Investigation</i> , 2011 , 121, 534-44	15.9	66
117	Molecular analysis of patterning of conduction tissues in the developing human heart. <i>Circulation:</i> Arrhythmia and Electrophysiology, 2011 , 4, 532-42	6.4	64

116	Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. <i>The Anatomical Record</i> , 2002 , 266, 93-102		61	
115	Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties. <i>Circulation Research</i> , 2015 , 116, 398-406	15.7	57	
114	Tbx2 controls lung growth by direct repression of the cell cycle inhibitor genes Cdkn1a and Cdkn1b. <i>PLoS Genetics</i> , 2013 , 9, e1003189	5	52	
113	Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. <i>Human Molecular Genetics</i> , 2012 , 21, 1217-29	5 .6	51	
112	TBX3 and its splice variant TBX3 + exon 2a are functionally similar. <i>Pigment Cell and Melanoma Research</i> , 2008 , 21, 379-87	4· 5	50	
111	Three-dimensional and molecular analysis of the venous pole of the developing human heart. Circulation, 2010 , 122, 798-807	16.7	49	
110	Transcriptional regulation of the Lardiac conduction system. <i>Nature Reviews Cardiology</i> , 2018 , 15, 617-63	10 4.8	47	
109	Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. <i>Birth Defects Research Part A: Clinical and Molecular Teratology</i> , 2011 , 91, 435-40		45	
108	Development, Proliferation, and Growth of the Mammalian Heart. <i>Molecular Therapy</i> , 2018 , 26, 1599-160	19 .7	42	
107	Anatomic substrates for cardiac conduction. <i>Heart Rhythm</i> , 2005 , 2, 875-86	6.7	40	
106	Distinct regulation of developmental and heart disease-induced atrial natriuretic factor expression by two separate distal sequences. <i>Circulation Research</i> , 2008 , 102, 849-59	15.7	39	
105	Atrial fibrillation: a developmental point of view. <i>Heart Rhythm</i> , 2009 , 6, 1818-24	5.7	38	
104	A mechanistic model for the development and maintenance of portocentral gradients in gene expression in the liver. <i>Hepatology</i> , 1999 , 29, 1180-92	11.2	38	
103	Structure and function of the Nppa-Nppb cluster locus during heart development and disease. Cellular and Molecular Life Sciences, 2018, 75, 1435-1444	10.3	37	
102	Conserved NPPB+ Border Zone Switches From MEF2- to AP-1-Driven Gene Program. <i>Circulation</i> , 2019 , 140, 864-879	16.7	37	
101	Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns. <i>Circulation Research</i> , 2010 , 106, 1212-20	15.7	37	
100	Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. Journal of Human Genetics, 2016 , 61, 13-9	4.3	36	
99	Identification of atrial fibrillation associated genes and functional non-coding variants. <i>Nature Communications</i> , 2019 , 10, 4755	17.4	36	

98	Homeobox transcription factor Pitx2: The rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. <i>Trends in Cardiovascular Medicine</i> , 2014 , 24, 23-31	6.9	35
97	Slit-roundabout signaling regulates the development of the cardiac systemic venous return and pericardium. <i>Circulation Research</i> , 2013 , 112, 465-75	15.7	35
96	Genetic determinants of P wave duration and PR segment. <i>Circulation: Cardiovascular Genetics</i> , 2014 , 7, 475-81		34
95	Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse. <i>Developmental Biology</i> , 2009 , 336, 145-55	3.1	33
94	Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. <i>Developmental Cell</i> , 2016 , 39, 239-253	10.2	33
93	The past, present, and future of pacemaker therapies. <i>Trends in Cardiovascular Medicine</i> , 2015 , 25, 661-7	78 .9	32
92	An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality. <i>Genes and Development</i> , 2018 , 32, 373-388	12.6	32
91	A transgenic mouse model for the simultaneous monitoring of ANF and BNP gene activity during heart development and disease. <i>Cardiovascular Research</i> , 2014 , 101, 78-86	9.9	32
90	A large permissive regulatory domain exclusively controls Tbx3 expression in the cardiac conduction system. <i>Circulation Research</i> , 2014 , 115, 432-41	15.7	32
89	Mkk4 is a negative regulator of the transforming growth factor beta 1 signaling associated with atrial remodeling and arrhythmogenesis with age. <i>Journal of the American Heart Association</i> , 2014 , 3, e000340	6	32
88	Tbx2 terminates shh/fgf signaling in the developing mouse limb bud by direct repression of gremlin1. <i>PLoS Genetics</i> , 2013 , 9, e1003467	6	32
87	Early repolarization in mice causes overestimation of ventricular activation time by the QRS duration. <i>Cardiovascular Research</i> , 2013 , 97, 182-91	9.9	31
86	Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. <i>Development (Cambridge)</i> , 2016 , 143, 2135-46	6.6	31
85	Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. <i>Development (Cambridge)</i> , 2019 , 146,	6.6	30
84	Comparative analysis of the natriuretic peptide precursor gene cluster in vertebrates reveals loss of ANF and retention of CNP-3 in chicken. <i>Developmental Dynamics</i> , 2005 , 233, 1076-82	2.9	30
83	The cardiac pacemaker and conduction system develops from embryonic myocardium that retains its primitive phenotype. <i>Journal of Cardiovascular Pharmacology</i> , 2010 , 56, 6-15	3.1	29
82	Expression of Irx6 during mouse morphogenesis. <i>Mechanisms of Development</i> , 2001 , 103, 193-5	1.7	29
81	Specialized impulse conduction pathway in the alligator heart. <i>ELife</i> , 2018 , 7,	8.9	28

(2014-2016)

80	EMERGE: a flexible modelling framework to predict genomic regulatory elements from genomic signatures. <i>Nucleic Acids Research</i> , 2016 , 44, e42	20.1	27	
79	Excessive trabeculations in noncompaction do not have the embryonic identity. <i>International Journal of Cardiology</i> , 2017 , 227, 325-330	3.2	26	
78	On the Evolution of the Cardiac Pacemaker. <i>Journal of Cardiovascular Development and Disease</i> , 2017 , 4,	4.2	25	
77	Atrial cardiomyocyte-specific expression of Cre recombinase driven by an Nppa gene fragment. <i>Genesis</i> , 2003 , 37, 1-4	1.9	25	
76	GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. <i>Cellular and Molecular Life Sciences</i> , 2015 , 72, 3871-81	10.3	24	
75	Evolution of the Sinus Venosus from Fish to Human. <i>Journal of Cardiovascular Development and Disease</i> , 2014 , 1, 14-28	4.2	23	
74	Can recent insights into cardiac development improve our understanding of congenitally malformed hearts?. <i>Clinical Anatomy</i> , 2009 , 22, 4-20	2.5	23	
73	Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. <i>Circulation Research</i> , 2020 , 127, 34-50	15.7	22	
72	Embryonic Tbx3 cardiomyocytes form the mature cardiac conduction system by progressive fate restriction. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	20	
71	Partial absence of pleuropericardial membranes in Tbx18- and Wt1-deficient mice. <i>PLoS ONE</i> , 2012 , 7, e45100	3.7	19	
70	The atrioventricular node: origin, development, and genetic program. <i>Trends in Cardiovascular Medicine</i> , 2010 , 20, 164-71	6.9	19	
69	Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms. <i>Prenatal Diagnosis</i> , 2015 , 35, 517-28	3.2	18	
68	Origin and development of the atrioventricular myocardial lineage: insight into the development of accessory pathways. <i>Birth Defects Research Part A: Clinical and Molecular Teratology</i> , 2011 , 91, 565-77		18	
67	Cardiac expression of Gal4 causes cardiomyopathy in a dose-dependent manner. <i>Journal of Muscle Research and Cell Motility</i> , 2003 , 24, 205-9	3.5	18	
66	Development of the Cardiac Conduction System: A Matter of Chamber Development. <i>Novartis Foundation Symposium</i> , 2008 , 25-43		17	
65	Morpho-functional characterization of the systemic venous pole of the reptile heart. <i>Scientific Reports</i> , 2017 , 7, 6644	4.9	16	
64	Developmental aspects of cardiac arrhythmogenesis. Cardiovascular Research, 2011, 91, 243-51	9.9	16	
63	A mutation in the Kozak sequence of GATA4 hampers translation in a family with atrial septal defects. <i>American Journal of Medical Genetics, Part A</i> , 2014 , 164A, 2732-8	2.5	15	

62	Developmental Origin of the Cardiac Conduction System: Insight from Lineage Tracing. <i>Pediatric Cardiology</i> , 2018 , 39, 1107-1114	2.1	14
61	Cardiac Morphogenesis: Specification of the Four-Chambered Heart. <i>Cold Spring Harbor Perspectives in Biology</i> , 2020 , 12,	10.2	13
60	Developing insights into cardiac regeneration. Development (Cambridge), 2013, 140, 3933-7	6.6	13
59	An enhancer cluster controls gene activity and topology of the SCN5A-SCN10A locus in vivo. <i>Nature Communications</i> , 2019 , 10, 4943	17.4	12
58	Identification of Functional Variant Enhancers Associated With Atrial Fibrillation. <i>Circulation Research</i> , 2020 , 127, 229-243	15.7	12
57	TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	12
56	Electrophysiological patterning of the heart. <i>Pediatric Cardiology</i> , 2012 , 33, 900-6	2.1	11
55	Popeye proteins: muscle for the aging sinus node. <i>Journal of Clinical Investigation</i> , 2012 , 122, 810-3	15.9	11
54	Comparative analysis of avian hearts provides little evidence for variation among species with acquired endothermy. <i>Journal of Morphology</i> , 2019 , 280, 395-410	1.6	10
53	Quantified growth of the human embryonic heart. <i>Biology Open</i> , 2021 , 10,	2.2	10
52	Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). <i>Development (Cambridge)</i> , 2019 , 146,	6.6	9
51	OccuPeak: ChIP-Seq peak calling based on internal background modelling. <i>PLoS ONE</i> , 2014 , 9, e99844	3.7	9
50	Generation of mice with a conditional null allele for Tbx2. <i>Genesis</i> , 2010 , 48, 195-9	1.9	9
49	Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. <i>PLoS ONE</i> , 2014 , 9, e110191	3.7	9
48	Localized and temporal gene regulation in heart development. <i>Current Topics in Developmental Biology</i> , 2012 , 100, 171-201	5.3	8
47	Epithelial Myeloid-Differentiation Factor 88 Is Dispensable during Klebsiella Pneumonia. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2017 , 56, 648-656	5.7	7
46	From GWAS to function: genetic variation in sodium channel gene enhancer influences electrical patterning. <i>Trends in Cardiovascular Medicine</i> , 2014 , 24, 99-104	6.9	7
45	Genome-Wide Analysis Identifies an Essential Human TBX3 Pacemaker Enhancer. <i>Circulation Research</i> , 2020 , 127, 1522-1535	15.7	7

(2019-2017)

44	Origins and consequences of congenital heart defects affecting the right ventricle. <i>Cardiovascular Research</i> , 2017 , 113, 1509-1520	9.9	6	
43	Identification and Characterization of a Transcribed Distal Enhancer Involved in Cardiac Kcnh2 Regulation. <i>Cell Reports</i> , 2019 , 28, 2704-2714.e5	10.6	6	
42	Sinus venosus incorporation: contentious issues and operational criteria for developmental and evolutionary studies. <i>Journal of Anatomy</i> , 2019 , 234, 583-591	2.9	6	
41	Systematic analysis of the development of the ductus venosus in wild type mouse and human embryos. <i>Early Human Development</i> , 2013 , 89, 1067-73	2.2	6	
40	Lineages of the Cardiac Conduction System. <i>Journal of Cardiovascular Development and Disease</i> , 2017 , 4,	4.2	6	
39	Early Cardiac Growth and the Ballooning Model of Cardiac Chamber Formation 2010 , 219-236		6	
38	Patterning and Development of the Conduction System of the Heart 2010 , 171-192		6	
37	T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 18617-18626	11.5	6	
36	Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2020 , 1867, 118509	4.9	6	
35	Genetic Dissection of a Super Enhancer Controlling the Cluster in the Heart. <i>Circulation Research</i> , 2021 , 128, 115-129	15.7	6	
34	Cardiomyocyte Progenitor Cells as a Functional Gene Delivery Vehicle for Long-Term Biological Pacing. <i>Molecules</i> , 2019 , 24,	4.8	5	
33	Integrating multi-scale knowledge on cardiac development into a computational model of ventricular trabeculation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 389-97	6.6	5	
32	Increased nuchal translucency origins from abnormal lymphatic development and is independent of the presence of a cardiac defect. <i>Prenatal Diagnosis</i> , 2015 , 35, 1278-86	3.2	5	
31	Gene regulatory elements of the cardiac conduction system. <i>Briefings in Functional Genomics</i> , 2014 , 13, 28-38	4.9	5	
30	Reptiles as a Model System to Study Heart Development. <i>Cold Spring Harbor Perspectives in Biology</i> , 2020 , 12,	10.2	5	
29	The formation of the atrioventricular conduction axis is linked in development to ventricular septation. <i>Journal of Experimental Biology</i> , 2020 , 223,	3	5	
28	Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. <i>PLoS ONE</i> , 2016 , 11, e0156787	3.7	5	
27	Variation in a Left Ventricle-Specific Hand1 Enhancer Impairs GATA Transcription Factor Binding and Disrupts Conduction System Development and Function. <i>Circulation Research</i> , 2019 , 125, 575-589	15.7	4	

26	Morphogenesis of the Vertebrate Heart. <i>Advances in Developmental Biology (Amsterdam, Netherlands)</i> , 2007 , 18, 31-68		4
25	Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. <i>Development (Cambridge)</i> , 2021 , 148,	6.6	4
24	A Variant Noncoding Region Regulates and Predisposes to Atrial Arrhythmias. <i>Circulation Research</i> , 2021 , 129, 420-434	15.7	4
23	TBX2-positive cells represent a multi-potent mesenchymal progenitor pool in the developing lung. <i>Respiratory Research</i> , 2019 , 20, 292	7.3	4
22	Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. <i>Stem Cell Reports</i> , 2021 , 16, 2589-2606	8	3
21	Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms. <i>Genetics in Medicine</i> , 2021 , 23, 103-110	8.1	3
20	Cardiac defects, nuchal edema and abnormal lymphatic development are not associated with morphological changes in the ductus venosus. <i>Early Human Development</i> , 2016 , 101, 39-48	2.2	2
19	Direct Reprograming to Regenerate Myocardium and Repair Its Pacemaker and Conduction System. <i>Medicines (Basel, Switzerland)</i> , 2018 , 5,	4.1	2
18	Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. <i>Circulation Research</i> , 2021 ,	15.7	2
17	The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart		2
16	Toward Biological Pacing by Cellular Delivery of Hcn2/SkM1. Frontiers in Physiology, 2020 , 11, 588679	4.6	2
15	Twisting of the zebrafish heart tube during cardiac looping is a -dependent and tissue-intrinsic process. <i>ELife</i> , 2021 , 10,	8.9	2
14	Lack of morphometric evidence for ventricular compaction in humans. <i>Journal of Cardiology</i> , 2021 , 78, 397-405	3	2
13	Developmental Aspects of the Electrophysiology of the Heart: Function Follows Form 2008 , 24-36		1
12	Regulation of Vertebrate Conduction System Development 2016 , 269-280		1
11	Low incidence of atrial septal defects in nonmammalian vertebrates. <i>Evolution & Development</i> , 2020 , 22, 241-256	2.6	1
10	Early Postnatal Cardiac Stress Does Not Influence Ventricular Cardiomyocyte Cell-Cycle Withdrawal. <i>Journal of Cardiovascular Development and Disease</i> , 2021 , 8,	4.2	1
9	Nuclear Receptor Nur77 Controls Cardiac Fibrosis through Distinct Actions on Fibroblasts and Cardiomyocytes. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	1

LIST OF PUBLICATIONS

8	Combined genomic and proteomic approaches reveal DNA binding sites and interaction partners of TBX2 in the developing lung. <i>Respiratory Research</i> , 2021 , 22, 85	7.3	1
7	Variant Intronic Enhancer Controls Expression and Heart Conduction. <i>Circulation</i> , 2021 , 144, 229-242	16.7	1
6	Higher spatial resolution improves the interpretation of the extent of ventricular trabeculation. <i>Journal of Anatomy</i> , 2021 ,	2.9	1
5	Absence of an anatomical origin for altered ductus venosus flow velocity waveforms in first-trimester human fetuses with increased nuchal translucency. <i>Prenatal Diagnosis</i> , 2016 , 36, 537-44	3.2	O
4	Cardiac Conduction System 2016 , 83-95		
3	Cardiac Conduction System 2016 , 83-95 Evolutionary Conservation of Atrial Natriuretic Factor(Anf) Expression, Cardiac Chamber Formation, and the Heart-forming Region 2007 , 84-87		
	Evolutionary Conservation of Atrial Natriuretic Factor(Anf) Expression, Cardiac Chamber	2.1	