Jack W Szostak

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9159253/jack-w-szostak-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

260	35,554 citations	86	187
papers		h-index	g-index
293	39,126 ext. citations	17.9	7.59
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
260	Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2116429119	11.5	1
259	Structural interpretation of the effects of threo-nucleotides on nonenzymatic template-directed polymerization. <i>Nucleic Acids Research</i> , 2021 , 49, 646-656	20.1	5
258	Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension. <i>Nucleic Acids Research</i> , 2021 , 49, 3681-3691	20.1	3
257	Ribose Alters the Photochemical Properties of the Nucleobase in Thionated Nucleosides. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 6707-6713	6.4	1
256	The virtual circular genome model for primordial RNA replication. <i>Rna</i> , 2021 , 27, 1-11	5.8	6
255	A Potential Role for Aminoacylation in Primordial RNA Copying Chemistry. <i>Biochemistry</i> , 2021 , 60, 477-4	1882	2
254	In search of the RNA world on Mars. <i>Geobiology</i> , 2021 , 19, 307-321	4.3	4
253	The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. Journal of the American Chemical Society, 2021 , 143, 3267-3279	16.4	4
252	StructureActivity Relationships in Nonenzymatic Template-Directed RNA Synthesis. <i>Angewandte Chemie</i> , 2021 , 133, 23107	3.6	O
251	Structure-Activity Relationships in Nonenzymatic Template-Directed RNA Synthesis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22925-22932	16.4	1
250	Shielding from UV Photodamage: Implications for Surficial Origins of Life Chemistry on the Early Earth. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 239-246	3.2	3
249	Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates. <i>Nucleic Acids Research</i> , 2021 ,	20.1	3
248	Deep sequencing of non-enzymatic RNA primer extension. <i>Nucleic Acids Research</i> , 2020 , 48, e70	20.1	10
247	Template-Directed Copying of RNA by Non-enzymatic Ligation. <i>Angewandte Chemie</i> , 2020 , 132, 15812-1	15,8617	3
246	Template-Directed Copying of RNA by Non-enzymatic Ligation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15682-15687	16.4	10
245	In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5741-5748	11.5	11
244	Bulk Self-Assembly of Giant, Unilamellar Vesicles. <i>ACS Nano</i> , 2020 , 14, 14627-14634	16.7	16

243	Synthesis of phosphoramidate-linked DNA by a modified DNA polymerase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 7276-7283	11.5	4
242	Nonenzymatic RNA-templated Synthesis of N3'->P5' Phosphoramidate DNA. <i>Bio-protocol</i> , 2020 , 10, e37	34 9	
241	A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2317	-2326	25
240	Large Phenotypic Enhancement of Structured Random RNA Pools. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1941-1951	16.4	2
239	Solid-Phase Synthesis of Sequence-Defined Informational Oligomers. <i>Journal of Organic Chemistry</i> , 2020 , 85, 13929-13938	4.2	1
238	S-phase Enriched Non-coding RNAs Regulate Gene Expression and Cell Cycle Progression. <i>Cell Reports</i> , 2020 , 31, 107629	10.6	6
237	Potentially Prebiotic Activation Chemistry Compatible with Nonenzymatic RNA Copying. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14810-14813	16.4	5
236	Assembly of a Ribozyme Ligase from Short Oligomers by Nonenzymatic Ligation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15961-15965	16.4	5
235	Ultraviolet-Driven Deamination of Cytidine Ribonucleotides Under Planetary Conditions. <i>Astrobiology</i> , 2020 , 20, 878-888	3.7	3
234	DNA polymerase activity on synthetic N3'->P5' phosphoramidate DNA templates. <i>Nucleic Acids Research</i> , 2019 , 47, 8941-8949	20.1	5
233	Core-Shell Modeling of Light Scattering by Vesicles: Effect of Size, Contents, and Lamellarity. <i>Biophysical Journal</i> , 2019 , 116, 659-669	2.9	16
232	Nonenzymatic Template-Directed Synthesis of Mixed-Sequence 3'-NP-DNA up to 25 Nucleotides Long Inside Model Protocells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10481-10488	16.4	18
231	The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides. <i>Angewandte Chemie</i> , 2019 , 131, 10926-10933	3.6	10
230	The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10812-10819	16.4	19
229	Transfer of Sequence Information and Replication of Diimine Duplexes. <i>Journal of Organic Chemistry</i> , 2019 , 84, 3754-3761	4.2	10
228	UV photostability of three 2-aminoazoles with key roles in prebiotic chemistry on the early earth. <i>Chemical Communications</i> , 2019 , 55, 10388-10391	5.8	13
227	Template-Directed Nonenzymatic Primer Extension Using 2-Methylimidazole-Activated Morpholino Derivatives of Guanosine and Cytidine. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12159-1216	6 ^{6.4}	4
226	Prebiotically Plausible "Patching" of RNA Backbone Cleavage through a 3'-5' Pyrophosphate Linkage. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18104-18112	16.4	10

225	Non-enzymatic primer extension with strand displacement. <i>ELife</i> , 2019 , 8,	8.9	16
224	Lipid constituents of model protocell membranes. <i>Emerging Topics in Life Sciences</i> , 2019 , 3, 537-542	3.5	9
223	Template-Directed Catalysis of a Multistep Reaction Pathway for Nonenzymatic RNA Primer Extension. <i>Biochemistry</i> , 2019 , 58, 755-762	3.2	13
222	Using Imaging Flow Cytometry to Quantify and Optimize Giant Vesicle Production by Water-in-oil Emulsion Transfer Methods. <i>Langmuir</i> , 2019 , 35, 2375-2382	4	15
221	Preparation, Purification, and Use of Fatty Acid-containing Liposomes. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	7
220	Fatty Acid/Phospholipid Blended Membranes: A Potential Intermediate State in Protocellular Evolution. <i>Small</i> , 2018 , 14, e1704077	11	45
219	Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2829-2840	16.4	16
218	Synthesis of a Nonhydrolyzable Nucleotide Phosphoroimidazolide Analogue That Catalyzes Nonenzymatic RNA Primer Extension. <i>Journal of the American Chemical Society</i> , 2018 , 140, 783-792	16.4	6
217	Solvated-electron production using cyanocuprates is compatible with the UV-environment on a Hadean-Archaean Earth. <i>Chemical Communications</i> , 2018 , 54, 1121-1124	5.8	17
216	Copying of Mixed-Sequence RNA Templates inside Model Protocells. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5171-5178	16.4	52
215	A Fluorescent G-Quadruplex Sensor for Chemical RNA Copying. <i>Angewandte Chemie</i> , 2018 , 130, 9992-9	9 9.6	6
214	How Did Life Begin?. <i>Nature</i> , 2018 , 557, S13-S15	50.4	3
213	Crystallographic observation of nonenzymatic RNA primer extension. <i>ELife</i> , 2018 , 7,	8.9	19
212	Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 13318-1332.	3 ^{11.5}	34
211	Catalysis of Template-Directed Nonenzymatic RNA Copying by Iron(II). <i>Journal of the American Chemical Society</i> , 2018 , 140, 15016-15021	16.4	13
21 0	Protocells and RNA Self-Replication. <i>Cold Spring Harbor Perspectives in Biology</i> , 2018 , 10,	10.2	104
209	Mettl1/Wdr4-Mediated mG tRNA Methylome Is Required for Normal mRNA Translation and Embryonic Stem Cell Self-Renewal and Differentiation. <i>Molecular Cell</i> , 2018 , 71, 244-255.e5	17.6	124
208	A Fluorescent G-Quadruplex Sensor for Chemical RNA Copying. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9844-9848	16.4	9

(2016-2017)

207	Enhanced Nonenzymatic RNA Copying with 2-Aminoimidazole Activated Nucleotides. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1810-1813	16.4	100	
206	Downstream Oligonucleotides Strongly Enhance the Affinity of GMP to RNA Primer-Template Complexes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 571-574	16.4	16	
205	The Narrow Road to the Deep Past: In Search of the Chemistry of the Origin of Life. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11037-11043	16.4	85	
204	Der schmale Pfad tief in die Vergangenheit: auf der Suche nach der Chemie der Anffige des Lebens. <i>Angewandte Chemie</i> , 2017 , 129, 11182-11189	3.6	25	
203	Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. <i>Nature Communications</i> , 2017 , 8, 15270	17.4	63	
202	Common and Potentially Prebiotic Origin for Precursors of Nucleotide Synthesis and Activation. Journal of the American Chemical Society, 2017 , 139, 8780-8783	16.4	62	
201	Comparative analysis of LIN28-RNA binding sites identified at single nucleotide resolution. <i>RNA Biology</i> , 2017 , 14, 1756-1765	4.8	6	
200	A Kinetic Model of Nonenzymatic RNA Polymerization by Cytidine-5'-phosphoro-2-aminoimidazolide. <i>Biochemistry</i> , 2017 , 56, 5739-5747	3.2	32	
199	Not just Salk. <i>Science</i> , 2017 , 357, 1105-1106	33.3	3	
198	Retraction: Oligoarginine peptides slow strand annealing and assist non-enzymatic RNA replication. <i>Nature Chemistry</i> , 2017 , 9, 1286	17.6	4	
197	A Mechanistic Explanation for the Regioselectivity of Nonenzymatic RNA Primer Extension. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16741-16747	16.4	16	
196	The Origin of Life on Earth and the Design of Alternative Life Forms. <i>Molecular Frontiers Journal</i> , 2017 , 01, 121-131	0.9	7	
195	UV-light-driven prebiotic synthesis of iron-sulfur clusters. <i>Nature Chemistry</i> , 2017 , 9, 1229-1234	17.6	72	
194	Insight into the mechanism of nonenzymatic RNA primer extension from the structure of an RNA-GpppG complex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7659-7664	11.5	19	
193	A Highly Reactive Imidazolium-Bridged Dinucleotide Intermediate in Nonenzymatic RNA Primer Extension. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11996-2002	16.4	61	
192	N-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for Functionalization of Protocell Membranes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16669-16676	16.4	30	
191	Collaboration between primitive cell membranes and soluble catalysts. <i>Nature Communications</i> , 2016 , 7, 11041	17.4	46	
190	Unusual Base-Pairing Interactions in Monomer-Template Complexes. <i>ACS Central Science</i> , 2016 , 2, 916-9	26 .8	21	

189	Oligoarginine peptides slow strand annealing and assist non-enzymatic RNA replication. <i>Nature Chemistry</i> , 2016 , 8, 915-21	17.6	36
188	Experimental and Computational Evidence for a Loose Transition State in Phosphoroimidazolide Hydrolysis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3986-9	16.4	13
187	Synthesis of activated 3'-amino-3'-deoxy-2-thio-thymidine, a superior substrate for the nonenzymatic copying of nucleic acid templates. <i>Chemical Communications</i> , 2016 , 52, 3684-6	5.8	11
186	A simple physical mechanism enables homeostasis in primitive cells. <i>Nature Chemistry</i> , 2016 , 8, 448-53	17.6	66
185	Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides. <i>ELife</i> , 2016 , 5,	8.9	77
184	Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom. <i>Frontiers of Chemical Science and Engineering</i> , 2016 , 10, 196-202	4.5	15
183	Thiolated uridine substrates and templates improve the rate and fidelity of ribozyme-catalyzed RNA copying. <i>Chemical Communications</i> , 2016 , 52, 6529-32	5.8	3
182	Effect of terminal 3'-hydroxymethyl modification of an RNA primer on nonenzymatic primer extension. <i>Chemical Communications</i> , 2016 , 52, 11905-11907	5.8	4
181	On the origin of life. <i>Medicina</i> , 2016 , 76, 199-203	1	4
180	Pinpointing RNA-Protein Cross-Links with Site-Specific Stable Isotope-Labeled Oligonucleotides. Journal of the American Chemical Society, 2015 , 137, 15378-81	16.4	12
179	Bidirectional Direct Sequencing of Noncanonical RNA by Two-Dimensional Analysis of Mass Chromatograms. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14430-8	16.4	16
178	Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides. <i>Angewandte Chemie</i> , 2015 , 127, 11901-11905	3.6	10
177	Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides. Angewandte Chemie - International Edition, 2015 , 54, 11735-9	16.4	41
176	Uncovering the thermodynamics of monomer binding for RNA replication. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6373-82	16.4	20
175	Construction of a liposome dialyzer for the preparation of high-value, small-volume liposome formulations. <i>Nature Protocols</i> , 2015 , 10, 927-38	18.8	6
174	Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization. <i>Nucleic Acids Research</i> , 2015 , 43, 7675-87	20.1	39
173	Generation of functional RNAs from inactive oligonucleotide complexes by non-enzymatic primer extension. <i>Journal of the American Chemical Society</i> , 2015 , 137, 483-9	16.4	21
172	Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2769-75	16.4	55

171	Rapid RNA exchange in aqueous two-phase system and coacervate droplets. <i>Origins of Life and Evolution of Biospheres</i> , 2014 , 44, 1-12	1.5	76
170	Controlled growth of filamentous fatty acid vesicles under flow. <i>Langmuir</i> , 2014 , 30, 14916-25	4	24
169	The free energy landscape of pseudorotation in 3'-5' and 2'-5' linked nucleic acids. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2858-65	16.4	28
168	Synthesis and nonenzymatic template-directed polymerization of 2'-amino-2'-deoxythreose nucleotides. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2033-9	16.4	22
167	Crystal structure studies of RNA duplexes containing s(2)U:A and s(2)U:U base pairs. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13916-24	16.4	34
166	Progress toward synthetic cells. <i>Annual Review of Biochemistry</i> , 2014 , 83, 615-40	29.1	207
165	mRNA display: from basic principles to macrocycle drug discovery. <i>Drug Discovery Today</i> , 2014 , 19, 388-	9 9 .8	135
164	Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. <i>Biophysical Journal</i> , 2014 , 107, 1582-90	2.9	54
163	Structural insights into the effects of 2'-5' linkages on the RNA duplex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 3050-5	11.5	32
162	Nonenzymatic template-directed RNA synthesis inside model protocells. <i>Science</i> , 2013 , 342, 1098-100	33.3	213
161	Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 17732-7	11.5	58
160	Functional RNAs exhibit tolerance for non-heritable 2'-5' versus 3'-5' backbone heterogeneity. <i>Nature Chemistry</i> , 2013 , 5, 390-4	17.6	69
159	Competition between model protocells driven by an encapsulated catalyst. <i>Nature Chemistry</i> , 2013 , 5, 495-501	17.6	183
158	Preparation of fatty acid micelles. <i>Methods in Enzymology</i> , 2013 , 533, 283-8	1.7	6
157	Vesicle extrusion through polycarbonate track-etched membranes using a hand-held mini-extruder. <i>Methods in Enzymology</i> , 2013 , 533, 275-82	1.7	9
156	Preparation of fatty acid or phospholipid vesicles by thin-film rehydration. <i>Methods in Enzymology</i> , 2013 , 533, 267-74	1.7	7
155	Synthesis of N3'-P5'-linked phosphoramidate DNA by nonenzymatic template-directed primer extension. <i>Journal of the American Chemical Society</i> , 2013 , 135, 924-32	16.4	41
154	In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10469-77	16.4	169

153	In vitro selection of functional lantipeptides. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8038	-4116.4	50
152	Activated ribonucleotides undergo a sugar pucker switch upon binding to a single-stranded RNA template. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3691-4	16.4	30
151	Concentration-driven growth of model protocell membranes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20812-9	16.4	102
150	Multicomponent assembly of proposed DNA precursors in water. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13889-95	16.4	50
149	Attempts to define life do not help to understand the origin of life. <i>Journal of Biomolecular Structure and Dynamics</i> , 2012 , 29, 599-600	3.6	43
148	The eightfold path to non-enzymatic RNA replication. <i>Journal of Systems Chemistry</i> , 2012 , 3,		203
147	Photochemically driven redox chemistry induces protocell membrane pearling and division. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9828-32	11.5	94
146	Physical effects underlying the transition from primitive to modern cell membranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 5249-54	11.5	183
145	Exploding vesicles. Journal of Systems Chemistry, 2011, 2,		14
144	Optimal Codon Choice Can Improve the Efficiency and Fidelity of N-Methyl Amino Acid Incorporation into Peptides by In-Vitro Translation. <i>Angewandte Chemie</i> , 2011 , 123, 3222-3225	3.6	O
143	Optimal codon choice can improve the efficiency and fidelity of N-methyl amino acid incorporation into peptides by in-vitro translation. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3164-7	16.4	13
142	Artificial lantipeptides from in vitro translations. <i>Chemical Communications</i> , 2011 , 47, 6141-3	5.8	32
141	An optimal degree of physical and chemical heterogeneity for the origin of life?. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 2894-901	5.8	82
140	Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13492-7	11.5	44
139	The Origins of Nucleotides. <i>Synlett</i> , 2011 , 2011, 1956-1964	2.2	48
138	The origins of cellular life. <i>Cold Spring Harbor Perspectives in Biology</i> , 2010 , 2, a002212	10.2	140
137	Expanding roles for diverse physical phenomena during the origin of life. <i>Annual Review of Biophysics</i> , 2010 , 39, 245-63	21.1	112
136	Chemoselective multicomponent one-pot assembly of purine precursors in water. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16677-88	16.4	123

(2008-2010)

135	Effect of stalling after mismatches on the error catastrophe in nonenzymatic nucleic acid replication. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5880-5	16.4	87
134	DNA-Enden: Nur ein Anfang (Nobel-Aufsatz). <i>Angewandte Chemie</i> , 2010 , 122, 7544-7563	3.6	1
133	DNA ends: just the beginning (Nobel lecture). <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7386	5-4024	12
132	Preparation of large monodisperse vesicles. <i>PLoS ONE</i> , 2009 , 4, e5009	3.7	60
131	Enzymatic primer-extension with glycerol-nucleoside triphosphates on DNA templates. <i>PLoS ONE</i> , 2009 , 4, e4949	3.7	21
130	N2'>p3' phosphoramidate glycerol nucleic acid as a potential alternative genetic system. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2119-21	16.4	54
129	Ray Wu, as remembered by a former student. Science in China Series C: Life Sciences, 2009, 52, 108-10		5
128	Origin of life on earth. <i>Scientific American</i> , 2009 , 301, 54-61	0.5	41
127	Efficient and rapid template-directed nucleic acid copying using 2'-amino-2',3'-dideoxyribonucleoside-5'-phosphorimidazolide monomers. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14560-70	16.4	88
126	Formation of protocell-like vesicles in a thermal diffusion column. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9628-9	16.4	97
125	Conformational analysis of DNA repair intermediates by time-resolved fluorescence spectroscopy. Journal of Physical Chemistry A, 2009, 113, 9585-7	2.8	8
124	Single-molecule imaging of an in vitro-evolved RNA aptamer reveals homogeneous ligand binding kinetics. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9866-7	16.4	39
123	Coupled growth and division of model protocell membranes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5705-13	16.4	347
122	Template-directed synthesis of a genetic polymer in a model protocell. <i>Nature</i> , 2008 , 454, 122-5	50.4	518
121	Ribosomal synthesis of N-methyl peptides. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6131-6	16.4	85
120	Selection of cyclic peptide aptamers to HCV IRES RNA using mRNA display. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 15293-8	11.5	13
119	Thermostability of model protocell membranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 13351-5	11.5	142
118	Metal-ion catalyzed polymerization in the eutectic phase in water-ice: a possible approach to template-directed RNA polymerization. <i>Journal of Inorganic Biochemistry</i> , 2008 , 102, 1104-11	4.2	36

117	Selection of cyclic peptide aptamers to HCV IRES RNA using mRNA display. FASEB Journal, 2008, 22, 338	3-338	2
116	2',3'-Dideoxy-3'-thionucleoside triphosphates: syntheses and polymerase substrate activities. <i>Organic Letters</i> , 2007 , 9, 1161-3	6.2	11
115	Structural insights into the evolution of a non-biological protein: importance of surface residues in protein fold optimization. <i>PLoS ONE</i> , 2007 , 2, e467	3.7	15
114	Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. <i>Nature</i> , 2007 , 448, 828-31	50.4	182
113	Mineral surface directed membrane assembly. Origins of Life and Evolution of Biospheres, 2007, 37, 67-8.	2 1.5	84
112	Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 14598-603	11.5	67
111	Structure and evolutionary analysis of a non-biological ATP-binding protein. <i>Journal of Molecular Biology</i> , 2007 , 371, 501-13	6.5	14
110	An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. <i>PLoS ONE</i> , 2007 , 2, e972	3.7	134
109	Solution structure of an informationally complex high-affinity RNA aptamer to GTP. Rna, 2006, 12, 567-	79 .8	58
108	A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. <i>Science</i> , 2006 , 313, 1788-92	33.3	231
107	Enzymatic aminoacylation of tRNA with unnatural amino acids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 4356-61	11.5	114
106	Ribosomal synthesis of dehydroalanine-containing peptides. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7150-1	16.4	84
105	Glycerol nucleoside triphosphates: synthesis and polymerase substrate activities. <i>Organic Letters</i> , 2006 , 8, 5345-7	6.2	36
104	In Vitro Selection of Functional Oligonucleotides and the Origins of Biochemical Activity 2006 , 1-28		3
103	Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. <i>Nature Medicine</i> , 2006 , 12, 1133-8	50.5	663
102	Directed evolution of ATP binding proteins from a zinc finger domain by using mRNA display. <i>Chemistry and Biology</i> , 2006 , 13, 139-47		28
101	Aptamers selected for higher-affinity binding are not more specific for the target ligand. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7929-37	16.4	98
100	High fidelity TNA synthesis by Therminator polymerase. <i>Nucleic Acids Research</i> , 2005 , 33, 5219-25	20.1	82

(2003-2005)

99	In vitro selection of RNA aptamers against a composite small molecule-protein surface. <i>Nucleic Acids Research</i> , 2005 , 33, 5602-10	20.1	10
98	Synthesis of alpha-L-threofuranosyl nucleoside triphosphates (tNTPs). Organic Letters, 2005, 7, 1485-7	6.2	25
97	Kinetic analysis of an efficient DNA-dependent TNA polymerase. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7427-34	16.4	80
96	RNA catalysis in model protocell vesicles. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13213-9	16.4	194
95	Shrink-wrap vesicles. <i>Langmuir</i> , 2005 , 21, 12124-9	4	22
94	An in vitro selection system for TNA. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2802-3	16.4	80
93	Ribosomal synthesis of unnatural peptides. Journal of the American Chemical Society, 2005, 127, 11727-	35 6.4	191
92	Scanning the human proteome for calmodulin-binding proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 5969-74	11.5	138
91	Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 7965-70	11.5	135
90	Evolutionary optimization of a nonbiological ATP binding protein for improved folding stability. <i>Chemistry and Biology</i> , 2004 , 11, 865-74		23
89	Replicating vesicles as models of primitive cell growth and division. <i>Current Opinion in Chemical Biology</i> , 2004 , 8, 660-4	9.7	164
88	Informational complexity and functional activity of RNA structures. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5130-7	16.4	166
87	A small aptamer with strong and specific recognition of the triphosphate of ATP. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8370-1	16.4	135
86	A kinetic study of the growth of fatty acid vesicles. <i>Biophysical Journal</i> , 2004 , 87, 988-98	2.9	185
85	The emergence of competition between model protocells. <i>Science</i> , 2004 , 305, 1474-6	33.3	322
84	Selective labeling and detection of specific RNAs in an RNA mixture. <i>Analytical Biochemistry</i> , 2003 , 315, 129-33	3.1	5
83	Functional information: Molecular messages. <i>Nature</i> , 2003 , 423, 689	50.4	57
82	DNA polymerase-mediated DNA synthesis on a TNA template. <i>Journal of the American Chemical Society</i> , 2003 , 125, 856-7	16.4	95

81	TNA synthesis by DNA polymerases. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9274-5	16.4	126
80	Experimental models of primitive cellular compartments: encapsulation, growth, and division. <i>Science</i> , 2003 , 302, 618-22	33.3	615
79	Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer. <i>Rna</i> , 2003 , 9, 1456-63	5.8	60
78	Isolation of high-affinity GTP aptamers from partially structured RNA libraries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 11616-21	11.5	125
77	Identification of epitope-like consensus motifs using mRNA display. <i>Journal of Molecular Recognition</i> , 2002 , 15, 126-34	2.6	48
76	Synthesizing life. <i>Nature</i> , 2001 , 409, 387-90	50.4	1268
75	Functional proteins from a random-sequence library. <i>Nature</i> , 2001 , 410, 715-8	50.4	413
74	In vitro evolution suggests multiple origins for the hammerhead ribozyme. <i>Nature</i> , 2001 , 414, 82-4	50.4	145
73	One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. <i>Protein Expression and Purification</i> , 2001 , 23, 440-6	2	193
72	Ribozyme-catalyzed tRNA aminoacylation. <i>Nature Structural Biology</i> , 2000 , 7, 28-33		138
71	Expanding the structural and functional diversity of RNA: analog uridine triphosphates as candidates for in vitro selection of nucleic acids. <i>Nucleic Acids Research</i> , 2000 , 28, 3316-22	20.1	51
70	Constructing high complexity synthetic libraries of long ORFs using in vitro selection. <i>Journal of Molecular Biology</i> , 2000 , 297, 309-19	6.5	107
69	In vitro selection of functional nucleic acids. <i>Annual Review of Biochemistry</i> , 1999 , 68, 611-47	29.1	1025
68	Isolation and characterization of fluorophore-binding RNA aptamers. Folding & Design, 1998, 3, 423-31		98
67	Isolation of a fluorophore-specific DNA aptamer with weak redox activity. <i>Chemistry and Biology</i> , 1998 , 5, 609-17		84
66	Structural and kinetic characterization of an acyl transferase ribozyme. <i>Journal of the American Chemical Society</i> , 1998 , 120, 1151-6	16.4	51
65	Introduction: Combinatorial Chemistry. <i>Chemical Reviews</i> , 1997 , 97, 347-348	68.1	74
64	Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding. <i>Journal of Molecular Biology</i> , 1997 , 273, 467-78	6.5	41

63	Isolation of novel ribozymes that ligate AMP-activated RNA substrates. <i>Chemistry and Biology</i> , 1997 , 4, 607-17		54
62	Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3'-5' phosphodiester bonds. <i>Journal of the American Chemical Society</i> , 1996 , 118, 3340-4	16.4	109
61	Chance and necessity in the selection of nucleic acid catalysts. <i>Accounts of Chemical Research</i> , 1996 , 29, 103-10	24.3	102
60	Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. <i>Journal of the American Chemical Society</i> , 1996 , 118, 3332-9	16.4	95
59	Ribozymes: aiming at RNA replication and protein synthesis. <i>Chemistry and Biology</i> , 1996 , 3, 717-25		56
58	Ribozyme-catalysed amino-acid transfer reactions. <i>Nature</i> , 1996 , 381, 442-4	50.4	209
57	In vitro evolution of a self-alkylating ribozyme. <i>Nature</i> , 1995 , 374, 777-82	50.4	222
56	A DNA metalloenzyme with DNA ligase activity. <i>Nature</i> , 1995 , 375, 611-4	50.4	382
55	Isolation of a ribozyme with 5'-5' ligase activity. <i>Chemistry and Biology</i> , 1995 , 2, 325-33		50
54	RNA aptamers that bind flavin and nicotinamide redox cofactors. <i>Journal of the American Chemical Society</i> , 1995 , 117, 1246-57	16.4	187
53	Reverse transcriptase reads through a 2'-5'linkage and a 2'-thiophosphate in a template. <i>Nucleic Acids Research</i> , 1995 , 23, 2811-4	20.1	65
52	Suppression of mutations in the core of the Tetrahymena ribozyme by spermidine, ethanol and by substrate stabilization. <i>Nucleic Acids Research</i> , 1994 , 22, 5326-31	20.1	16
51	In vitro evolution of new ribozymes with polynucleotide kinase activity. <i>Nature</i> , 1994 , 371, 31-6	50.4	234
50	In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron. <i>Journal of Molecular Biology</i> , 1994 , 235, 140-55	6.5	47
49	An RNA motif that binds ATP. <i>Nature</i> , 1993 , 364, 550-3	50.4	522
48	In vitro genetics. <i>Trends in Biochemical Sciences</i> , 1992 , 17, 89-93	10.3	139
47	Stereospecific recognition of tryptophan agarose by in vitro selected RNA. <i>Journal of the American Chemical Society</i> , 1992 , 114, 3990-3991	16.4	137
46	Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. <i>Nature</i> , 1992 , 355, 850-2	50.4	643

45	In Vitro Selection of Specific Ligand-binding Nucleic Acids. <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 979-988		72
44	In-vitro-Selektion spezifisch ligandenbindender Nucleinsüren. <i>Angewandte Chemie</i> , 1992 , 104, 1001-101	3 .6	20
43	Synthesis of RNA containing inosine: analysis of the sequence requirements for the 5' splice site of the Tetrahymena group I intron. <i>Nucleic Acids Research</i> , 1991 , 19, 4161-6	20.1	37
42	Mutations in a semiconserved region of the Tetrahymena intron. FEBS Letters, 1991, 280, 171-4	3.8	10
41	Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. <i>Cell</i> , 1991 , 64, 1155-61	56.2	497
40	HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. <i>Cell</i> , 1991 , 67, 529-36	56.2	366
39	In vitro selection of RNA molecules that bind specific ligands. <i>Nature</i> , 1990 , 346, 818-22	50.4	7326
38	In vitro genetic analysis of the Tetrahymena self-splicing intron. <i>Nature</i> , 1990 , 347, 406-8	50.4	120
37	Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. <i>Nature</i> , 1990 , 347, 578-80	50.4	133
36	Chemical synthesis of oligoribonucleotides containing 2-aminopurine: substrates for the investigation of ribozyme function. <i>Journal of Organic Chemistry</i> , 1990 , 55, 5547-9	4.2	38
35	Saccharomyces cerevisiae homoserine kinase is homologous to prokaryotic homoserine kinases. <i>Gene</i> , 1990 , 96, 177-80	3.8	8
34	Mutational analysis of conserved nucleotides in a self-splicing group I intron. <i>Journal of Molecular Biology</i> , 1990 , 215, 345-58	6.5	70
33	An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. <i>Nature</i> , 1989 , 338, 35-9	50.4	308
32	Double-strand breaks at an initiation site for meiotic gene conversion. <i>Nature</i> , 1989 , 338, 87-90	50.4	507
31	RNA-catalysed synthesis of complementary-strand RNA. <i>Nature</i> , 1989 , 339, 519-22	50.4	204
30	The guanosine binding site of the Tetrahymena ribozyme. <i>Nature</i> , 1989 , 342, 391-5	50.4	358
29	A mutant with a defect in telomere elongation leads to senescence in yeast. <i>Cell</i> , 1989 , 57, 633-43	56.2	785
28	Telomeric repeat from T. thermophila cross hybridizes with human telomeres. <i>Nature</i> , 1988 , 332, 656-9	50.4	189

27	Structural conventions for group I introns. <i>Nucleic Acids Research</i> , 1987 , 15, 7217-21	20.1	276
26	Artificial chromosomes. <i>Scientific American</i> , 1987 , 257, 62-8	0.5	32
25	Enzymatic activity of the conserved core of a group I self-splicing intron. <i>Nature</i> , 1986 , 322, 83-6	50.4	86
24	Chromosome length controls mitotic chromosome segregation in yeast. <i>Cell</i> , 1986 , 45, 529-36	56.2	131
23	The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways. <i>Cell</i> , 1985 , 43, 483-92	56.2	154
22	Chromosome segregation in mitosis and meiosis. <i>Annual Review of Cell Biology</i> , 1985 , 1, 289-315		170
21	DNA sequences of telomeres maintained in yeast. <i>Nature</i> , 1984 , 310, 154-7	50.4	455
20	Transfer of yeast telomeres to linear plasmids by recombination. <i>Cell</i> , 1984 , 39, 191-201	56.2	154
19	Genetic applications of yeast transformation with linear and gapped plasmids. <i>Methods in Enzymology</i> , 1983 , 101, 228-45	1.7	449
18	Pedigree analysis of plasmid segregation in yeast. <i>Cell</i> , 1983 , 34, 961-70	56.2	358
17	The double-strand-break repair model for recombination. <i>Cell</i> , 1983 , 33, 25-35	56.2	2305
16	Yeast vectors with negative selection. <i>Methods in Enzymology</i> , 1983 , 101, 278-90	1.7	20
15	Construction of specific chromosomal rearrangements in yeast. <i>Methods in Enzymology</i> , 1983 , 101, 269	-718 ₇	4
14	Is there left-handed DNA at the ends of yeast chromosomes?. <i>Nature</i> , 1983 , 302, 84-6	50.4	108
13	Construction of artificial chromosomes in yeast. <i>Nature</i> , 1983 , 305, 189-93	50.4	387
12	Multiple, Tandem Plasmid Integration in Saccharomyces cerevisiae. <i>Molecular and Cellular Biology</i> , 1983 , 3, 747-749	4.8	27
11	Cloning yeast telomeres on linear plasmid vectors. <i>Cell</i> , 1982 , 29, 245-55	56.2	500
10	DNA sequence of a mutation in the leader region of the yeast iso-1-cytochrome c mRNA. <i>Cell</i> , 1981 , 25, 277-84	56.2	70

9	Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. <i>Nature</i> , 1980 , 284, 426-30 50.4	382
8	Insertion of a genetic marker into the ribosomal DNA of yeast. <i>Plasmid</i> , 1979 , 2, 536-54 3.3	145
7	Specific binding of a synthetic oligodeoxyribonucleotide to yeast cytochrome c mRNA. <i>Nature</i> , 1977, 265, 61-3	43
6	Prebiotically Plausible Patching of RNA Backbone Cleavage Through a 3?-5? Pyrophosphate Linkage	1
5	Non-enzymatic primer extension with strand displacement	1
4	Bacterial carotenoids suppress Caenorhabditis elegans surveillance and defense of translational dysfunction	2
3	Interpreting turbidity measurements for vesicle studies	1
2	Assembly of a functional ribozyme from short oligomers by enhanced non-enzymatic ligation	2
1	A model for the emergence of RNA from a prebiotically plausible mixture of ribonucleotides, arabinonucleotides and 2Edeoxynucleotides	3