
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology (United Kingdom), 2001, 147, 2409-2415.	0.7	467
3	An AIF orthologue regulates apoptosis in yeast. Journal of Cell Biology, 2004, 166, 969-974.	2.3	359
4	CytochromecRelease and Mitochondria Involvement in Programmed Cell Death Induced by Acetic Acid inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2002, 13, 2598-2606.	0.9	347
5	Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H ₂ O ₂ and superoxide dismutase activity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15123-15128.	3.3	241
6	Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis inSaccharomyces cerevisiae. Molecular Microbiology, 2005, 58, 824-834.	1.2	161
7	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	1.4	158
8	Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology (United Kingdom), 2001, 147, 3335-3343.	0.7	121
9	NO-mediated apoptosis in yeast. Journal of Cell Science, 2007, 120, 3279-3288.	1.2	114
10	SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on Sir2-mediated mitophagy. Autophagy, 2012, 8, 1494-1509.	4.3	113
11	lsc1p Plays a Key Role in Hydrogen Peroxide Resistance and Chronological Lifespan through Modulation of Iron Levels and Apoptosis. Molecular Biology of the Cell, 2008, 19, 865-876.	0.9	96
12	Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging, 2010, 2, 709-726.	1.4	93
13	Yeast protein expression profile during acetic acidâ€induced apoptosis indicates causal involvement of the TOR pathway. Proteomics, 2009, 9, 720-732.	1.3	82
14	Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death and Differentiation, 2019, 26, 1411-1427.	5.0	80
15	Drug-induced apoptosis in yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1436-1448.	1.9	62
16	Reactive oxygen species, ageing and the hormesis police. FEMS Yeast Research, 2014, 14, 33-39.	1.1	60
17	Yeast Programmed Cell Death: An Intricate Puzzle. IUBMB Life, 2005, 57, 129-135.	1.5	58
18	Nitric Oxide Signaling Is Disrupted in the Yeast Model for Batten Disease. Molecular Biology of the Cell, 2007, 18, 2755-2767.	0.9	56

#	Article	IF	CITATIONS
19	Towards a molecular genetic system for the pathogenic fungus Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2007, 44, 1387-1398.	0.9	54
20	Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2009, 46, 919-926.	0.9	54
21	Acetic acid induces a programmed cell death process in the food spoilage yeast. FEMS Yeast Research, 2003, 3, 91-96.	1.1	52
22	Low auxotrophy-complementing amino acid concentrations reduce yeast chronological life span. Mechanisms of Ageing and Development, 2007, 128, 383-391.	2.2	49
23	Multiplex PCR identification of eight clinically relevant <i>Candida</i> species. Medical Mycology, 2007, 45, 619-627.	0.3	48
24	Bioresorbable ureteral stents from natural origin polymers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 608-617.	1.6	46
25	Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Molecular Psychiatry, 2018, 23, 1031-1039.	4.1	44
26	Targeting Metabolic Reprogramming in Acute Myeloid Leukemia. Cells, 2019, 8, 967.	1.8	43
27	pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-Ã-trois to stress tolerance and longevity. Microbial Cell, 2018, 5, 119-136.	1.4	42
28	Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: Flow cytometry and GP43 sequence analysis. Fungal Genetics and Biology, 2007, 44, 25-31.	0.9	39
29	Expressing and functional analysis of mammalian apoptotic regulators in yeast. Cell Death and Differentiation, 2010, 17, 737-745.	5.0	39
30	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2044-2049.	1.9	39
31	The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation. PLoS ONE, 2011, 6, e28256.	1.1	37
32	Energy conversion coupled to cyanide-resistant respiration in the yeasts and. FEMS Yeast Research, 2003, 3, 141-148.	1.1	35
33	The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes and Immunity, 2012, 13, 197-201.	2.2	35
34	Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. Acta Biomaterialia, 2017, 55, 131-143.	4.1	34
35	The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii. PLoS ONE, 2012, 7, e52402.	1.1	33
36	Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. Microbial Cell, 2014, 1, 118-127.	1.4	30

#	Article	IF	CITATIONS
37	The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. Fungal Genetics and Biology, 2010, 47, 1055-1069.	0.9	29
38	The bacterial exotoxin AIP56 induces fish macrophage and neutrophil apoptosis using mechanisms of the extrinsic and intrinsic pathways. Fish and Shellfish Immunology, 2011, 30, 173-181.	1.6	29
39	Exploitation of new chalcones and 4H-chromenes as agents for cancer treatment. European Journal of Medicinal Chemistry, 2018, 157, 101-114.	2.6	29
40	Accumulation of Non-Superoxide Anion Reactive Oxygen Species Mediates Nitrogen-Limited Alcoholic Fermentation by <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2010, 76, 7918-7924.	1.4	28
41	IL-17A Promotes Intracellular Growth of Mycobacterium by Inhibiting Apoptosis of Infected Macrophages. Frontiers in Immunology, 2015, 6, 498.	2.2	28
42	Metal stress induces programmed cell death in aquatic fungi. Aquatic Toxicology, 2009, 92, 264-270.	1.9	27
43	Proteomic Analysis of the Action of the Mycobacterium ulcerans Toxin Mycolactone: Targeting Host Cells Cytoskeleton and Collagen. PLoS Neglected Tropical Diseases, 2014, 8, e3066.	1.3	27
44	The Spoilage Yeast Zygosaccharomyces bailii Forms Mitotic Spores: a Screening Method for Haploidization. Applied and Environmental Microbiology, 2003, 69, 649-653.	1.4	25
45	An atypical active cell death process underlies the fungicidal activity of ciclopirox olamine against the yeastSaccharomyces cerevisiae. FEMS Yeast Research, 2007, 7, 404-412.	1.1	23
46	Involvement of Yeast HSP90 Isoforms in Response to Stress and Cell Death Induced by Acetic Acid. PLoS ONE, 2013, 8, e71294.	1.1	21
47	Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy. Mechanisms of Ageing and Development, 2017, 161, 270-276.	2.2	21
48	Yeast at the Forefront of Research on Ageing and Age-Related Diseases. Progress in Molecular and Subcellular Biology, 2019, 58, 217-242.	0.9	21
49	Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?. Biochemical Society Transactions, 2011, 39, 1466-1470.	1.6	20
50	Unravelling the anticancer potential of functionalized chromeno[2,3-b]pyridines for breast cancer treatment. Bioorganic Chemistry, 2020, 100, 103942.	2.0	20
51	An alternative respiratory pathway on Candida krusei: implications on susceptibility profile and oxidative stress. FEMS Yeast Research, 2012, 12, 423-429.	1.1	19
52	α‧ynuclein toxicity in yeast and human cells is caused by cell cycle reâ€entry and autophagy degradation of ribonucleotide reductase 1. Aging Cell, 2019, 18, e12922.	3.0	19
53	Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS Yeast Research, 2003, 3, 91-96.	1.1	18
54	A twenty-year survey of dermatophytoses in Braga, Portugal. International Journal of Dermatology, 2006, 45, 822-827.	0.5	18

#	Article	IF	CITATIONS
55	Transcriptomic and chemogenomic analyses unveil the essential role of Com2-regulon in response and tolerance of Saccharomyces cerevisiae to stress induced by sulfur dioxide. Microbial Cell, 2019, 6, 509-523.	1.4	18
56	DNA replication stress-induced loss of reproductive capacity in <i>S. cerevisiae</i> and its inhibition by caloric restriction. Cell Cycle, 2013, 12, 1189-1200.	1.3	16
57	Increasing the Fungicidal Action of Amphotericin B by Inhibiting the Nitric Oxide-Dependent Tolerance Pathway. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-17.	1.9	16
58	The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183255.	1.4	16
59	P. brasiliensis Virulence Is Affected by SconC, the Negative Regulator of Inorganic Sulfur Assimilation. PLoS ONE, 2013, 8, e74725.	1.1	15
60	Linking cellular proteostasis to yeast longevity. FEMS Yeast Research, 2018, 18, .	1.1	15
61	The sensitivity of the yeast, <i>Saccharomyces cerevisiae</i> , to acetic acid is influenced by <i>DOM34</i> and <i>RPL36A</i> . PeerJ, 2017, 5, e4037.	0.9	15
62	Signalling mechanisms that regulate metabolic profile and autophagy of acute myeloid leukaemia cells. Journal of Cellular and Molecular Medicine, 2018, 22, 4807-4817.	1.6	14
63	Caloric restriction rescues yeast cells from alpha-synuclein toxicity through autophagic control of proteostasis. Aging, 2018, 10, 3821-3833.	1.4	13
64	Proteolytic systems and AMP-activated protein kinase are critical targets of acute myeloid leukemia therapeutic approaches. Oncotarget, 2015, 6, 31428-31440.	0.8	13
65	Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot. Biology, 2020, 9, 59.	1.3	12
66	Sirtuins and Proteolytic Systems: Implications for Pathogenesis of Synucleinopathies. Biomolecules, 2015, 5, 735-757.	1.8	11
67	Mitochondrial proteomics of the acetic acid - induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii - derived hybrid strain. Microbial Cell, 2016, 3, 65-78.	1.4	11
68	Functionality of the Paracoccidioides Mating α-Pheromone-Receptor System. PLoS ONE, 2012, 7, e47033.	1.1	8
69	AMPK in Pathogens. Exs, 2016, 107, 287-323.	1.4	8
70	Elucidating the mechanisms of action of parecoxib in the MG-63 osteosarcoma cell line. Anti-Cancer Drugs, 2020, 31, 507-517.	0.7	7
71	Yeast Stress, Aging, and Death. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-3.	1.9	6
72	Morphological heterogeneity ofParacoccidioides brasiliensis: relevance of the Rho-like GTPasePbCDC42. Medical Mycology, 2012, 50, 768-774.	0.3	4

#	Article	IF	CITATIONS
73	Cellular Models of Aging. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-3.	1.9	4
74	Functional Genetic Variants in ATG10 Are Associated with Acute Myeloid Leukemia. Cancers, 2021, 13, 1344.	1.7	4
75	Title is missing!. FEMS Yeast Research, 2003, 3, 449-450.	1.1	3
76	Polymorphisms within Autophagy-Related Genes Influence the Risk of Developing Colorectal Cancer: A Meta-Analysis of Four Large Cohorts. Cancers, 2021, 13, 1258.	1.7	3
77	Overeating yeast display fatty acid-induced necrotic cell death. Cell Cycle, 2010, 9, 2945-2953.	1.3	1
78	Yeast as a platform to uncover ceramide-induced ancient cell death routines. Cell Cycle, 2012, 11, 14-14.	1.3	1
79	From Regulated Cell Death to Adaptive Stress Strategies: Convergence and Divergence in Eukaryotic Cells. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-2.	1.9	1
80	Yeast between life and death: a summary of the Ninth International Meeting on Yeast Apoptosis in Rome, Italy, 17–20 September 2012. Cell Death and Differentiation, 2013, 20, 1281-1283.	5.0	0
81	Microbial Programmed Necrosis: The Cost of Conflicts Between Stress and Metabolism. , 2014, , 253-274.		Ο
82	Yeast on the corner of life and death decisions. Mechanisms of Ageing and Development, 2017, 161, 199-200.	2.2	0
83	Innovative, integrative, and interactive inâ€class activity on metabolic regulation: Evaluating educational impacts. Biochemistry and Molecular Biology Education, 2021, 49, 870-881.	0.5	Ο
84	New perspectives from South-Y-East, not all about death A report of the 12th International Meeting on Yeast Apoptosis in Bari, Italy, May 14th-18th, 2017. Microbial Cell, 2018, 5, 112-115.	1.4	0