
Christian Sippl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9159008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seismic imaging of subducting continental lower crust beneath the Pamir. Earth and Planetary Science Letters, 2013, 375, 101-112.	4.4	158
2	Geometry of the Pamirâ€Hindu Kush intermediateâ€depth earthquake zone from local seismic data. Journal of Geophysical Research: Solid Earth, 2013, 118, 1438-1457.	3.4	156
3	Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth and Planetary Science Letters, 2016, 435, 171-184.	4.4	148
4	Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophysical Journal International, 2012, 188, 385-407.	2.4	113
5	Seismotectonics of the Pamir. Tectonics, 2014, 33, 1501-1518.	2.8	108
6	Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography. Earth and Planetary Science Letters, 2013, 384, 165-177.	4.4	91
7	Seismicity Structure of the Northern Chile Forearc From >100,000 Doubleâ€Difference Relocated Hypocenters. Journal of Geophysical Research: Solid Earth, 2018, 123, 4063-4087.	3.4	75
8	Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nature Geoscience, 2018, 11, 285-290.	12.9	61
9	The Crust in the Pamir: Insights From Receiver Functions. Journal of Geophysical Research: Solid Earth, 2019, 124, 9313-9331.	3.4	42
10	The 2008 Nura earthquake sequence at the Pamir-Tian Shan collision zone, southern Kyrgyzstan. Tectonics, 2014, 33, 2382-2399.	2.8	32
11	Characterizing Afterslip and Ground Displacement Rate Increase Following the 2014 Iquiqueâ€Pisagua M _w 8.1 Earthquake, Northern Chile. Journal of Geophysical Research: Solid Earth, 2018, 123, 4171-4192.	3.4	29
12	Probing the Northern Chile Megathrust With Seismicity: The 2014 M8.1 Iquique Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 2019, 124, 12935-12954.	3.4	23
13	Moho geometry along a north–south passive seismic transect through Central Australia. Tectonophysics, 2016, 676, 56-69.	2.2	21
14	Lithospheric discontinuities in Central Australia. Tectonophysics, 2018, 744, 10-22.	2.2	19
15	Linear Relationship Between Aftershock Productivity and Seismic Coupling in the Northern Chile Subduction Zone. Journal of Geophysical Research: Solid Earth, 2019, 124, 8726-8738.	3.4	18
16	Filling the gap in a double seismic zone: Intraslab seismicity in Northern Chile. Lithos, 2019, 346-347, 105155.	1.4	18
17	Seismotectonic study of the Fergana Region (Southern Kyrgyzstan): distribution and kinematics of local seismicity. Earth, Planets and Space, 2015, 67, .	2.5	17
18	Low uncertainty multifeature magnitude estimation with 3-D corrections and boosting tree regression: application to North Chile. Geophysical Journal International, 2020, 220, 142-159.	2.4	14

CHRISTIAN SIPPL

#	Article	IF	CITATIONS
19	Crustal structure of a Proterozoic craton boundary: East Albany-Fraser Orogen, Western Australia, imaged with passive seismic and gravity anomaly data. Precambrian Research, 2017, 296, 78-92.	2.7	13
20	Seismic Anisotropy Beneath the Pamir and the Hindu Kush: Evidence for Contributions From Crust, Mantle Lithosphere, and Asthenosphere. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,727.	3.4	13
21	Microseismicity Appears to Outline Highly Coupled Regions on the Central Chile Megathrust. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022252.	3.4	13
22	Observations of guided waves from the Pamir seismic zone provide additional evidence for the existence of subducted continental lower crust. Tectonophysics, 2019, 762, 1-16.	2.2	8
23	Impact of bending-related faulting and oceanic-plate topography on slab hydration and intermediate-depth seismicity. , 2022, 18, 562-584.		8
24	The Crustal Stress Field Inferred From Focal Mechanisms in Northern Chile. Geophysical Research Letters, 2021, 48, e2021GL092889.	4.0	7
25	New constraints on the current stress field and seismic velocity structure of the eastern Yilgarn Craton from mechanisms of local earthquakes. Australian Journal of Earth Sciences, 2015, 62, 921-931.	1.0	6
26	Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings. Geophysical Journal International, 2017, 210, 1641-1651.	2.4	5
27	Estimating Rupture Directions from Local Earthquake Data Using the IPOC Observatory in Northern Chile. Seismological Research Letters, 2018, 89, 495-502.	1.9	5
28	A Cross orrelationâ€Based Approach to Direct Seismogram Stacking for Receiverâ€Side Structural Inversion. Bulletin of the Seismological Society of America, 2017, 107, 1545-1550.	2.3	3