Andres Tittarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9158683/publications.pdf

Version: 2024-02-01

		471509	526287	
29	934	17		27
papers	citations	h-index		g-index
29	29	29		1787
2)	2)	23		1707
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Connexins in melanoma: Potential role of Cx46 in its aggressiveness. Pigment Cell and Melanoma Research, 2021, 34, 853-868.	3.3	6
2	The Evaluation of 17 Gastrointestinal Tumor Markers Reveals Prognosis Value for MUC6, CK17, and CD10 in Gallbladder-Cancer Patients. Diagnostics, 2021, 11, 153.	2.6	12
3	Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166258.	3.8	7
4	Hypoxic Melanoma Cells Deliver microRNAs to Dendritic Cells and Cytotoxic T Lymphocytes through Connexin-43 Channels. International Journal of Molecular Sciences, 2020, 21, 7567.	4.1	19
5	Flow Cytometry Evaluation of Gap Junction-Mediated Intercellular Communication Between Cytotoxic T Cells and Target Tumor Cells. Methods in Molecular Biology, 2020, 2346, 225-236.	0.9	3
6	A heat-shocked melanoma cell lysate vaccine enhances tumor infiltration by prototypic effector T cells inhibiting tumor growth., 2020, 8, e000999.		19
7	Connexin-Mediated Signaling at the Immunological Synapse. International Journal of Molecular Sciences, 2020, 21, 3736.	4.1	19
8	Cx43-Gap Junctions Accumulate at the Cytotoxic Immunological Synapse Enabling Cytotoxic T Lymphocyte Melanoma Cell Killing. International Journal of Molecular Sciences, 2019, 20, 4509.	4.1	25
9	Dexamethasone turns tumor antigen-presenting cells into tolerogenic dendritic cells with T cell inhibitory functions. Immunobiology, 2019, 224, 697-705.	1.9	25
10	Dendritic Cells Loaded with Heat Shock-Conditioned Ovarian Epithelial Carcinoma Cell Lysates Elicit T Cell-Dependent Antitumor Immune Responses <i>In Vitro</i> . Journal of Immunology Research, 2019, 2019, 1-12.	2,2	12
11	Tumor lysate-based vaccines: on the road to immunotherapy for gallbladder cancer. Cancer Immunology, Immunotherapy, 2018, 67, 1897-1910.	4.2	42
12	High CD8+ and absence of Foxp3+ T lymphocytes infiltration in gallbladder tumors correlate with prolonged patients survival. BMC Cancer, 2018, 18, 243.	2.6	26
13	Proteomic Identification of Heat Shock-Induced Danger Signals in a Melanoma Cell Lysate Used in Dendritic Cell-Based Cancer Immunotherapy. Journal of Immunology Research, 2018, 2018, 1-15.	2.2	7
14	Molecular signatures associated with tumor-specific immune response in melanoma patients treated with dendritic cell-based immunotherapy. Oncotarget, 2018, 9, 17014-17027.	1.8	11
15	Mind the Gaps in Tumor Immunity: Impact of Connexin-Mediated Intercellular Connections. Frontiers in Immunology, 2017, 8, 1067.	4.8	23
16	Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity. British Journal of Cancer, 2015, 113, 259-267.	6.4	54
17	The Selective Degradation of Synaptic Connexin 43 Protein by Hypoxia-induced Autophagy Impairs Natural Killer Cell-mediated Tumor Cell Killing. Journal of Biological Chemistry, 2015, 290, 23670-23679.	3.4	81
18	Tumor Plasticity Interferes with Anti-Tumor Immunity. Critical Reviews in Immunology, 2014, 34, 91-102.	0.5	44

#	Article	IF	CITATION
19	ITPR1 Protects Renal Cancer Cells against Natural Killer Cells by Inducing Autophagy. Cancer Research, 2014, 74, 6820-6832.	0.9	97
20	Gap Junction Intercellular Communications Regulate NK Cell Activation and Modulate NK Cytotoxic Capacity. Journal of Immunology, 2014, 192, 1313-1319.	0.8	42
21	Regulation of gap junctions in melanoma and their impact on Melan-A/MART-1-specific CD8+ T lymphocyte emergence. Journal of Molecular Medicine, 2013, 91, 1207-1220.	3.9	8
22	The immunological response and post-treatment survival of DC-vaccinated melanoma patients are associated with increased Th1/Th17 and reduced Th3 cytokine responses. Cancer Immunology, Immunotherapy, 2013, 62, 761-772.	4.2	22
23	Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients. Cancer Immunology, Immunotherapy, 2012, 61, 2067-2077.	4.2	36
24	Heat-Shock Induction of Tumor-Derived Danger Signals Mediates Rapid Monocyte Differentiation into Clinically Effective Dendritic Cells. Clinical Cancer Research, 2011, 17, 2474-2483.	7.0	70
25	Functional Gap Junctions Accumulate at the Immunological Synapse and Contribute to T Cell Activation. Journal of Immunology, 2011, 187, 3121-3132.	0.8	67
26	Abstract B17: Heat shock-induced danger signals in tumor cells are crucial for a rapid differentiation of monocyte to the rapeutic dendritic cells., 2010 ,,.		1
27	Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics, 2009, 10, 423.	2.8	63
28	Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biology, 2009, 9, 121.	3.6	38
29	Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. Journal of Experimental Botany,	4.8	55