Marina G M Castor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9158635/publications.pdf

Version: 2024-02-01

687220 677027 24 481 13 citations h-index papers

g-index 24 24 24 1080 docs citations times ranked citing authors all docs

22

#	Article	IF	CITATIONS
1	Involvement of the cannabinoid system in chronic inflammatory intestinal diseases: opportunities for new therapies. Intestinal Research, 2022, 20, 392-417.	1.0	1
2	Cannabidiol Enhances Intestinal Cannabinoid Receptor Type 2 Receptor Expression and Activation Increasing Regulatory T Cells and Reduces Murine Acute Graft-versus-Host Disease without Interfering with the Graft-versus-Leukemia Response. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 273-283.	1.3	10
3	Kahweol, a natural diterpene from coffee, induces peripheral antinociception by endocannabinoid system activation. Brazilian Journal of Medical and Biological Research, 2021, 54, e11071.	0.7	1
4	$\hat{l}\pm 2$ -Adrenoceptor agonist induces peripheral antinociception via the endocannabinoid system. Pharmacological Reports, 2020, 72, 96-103.	1.5	2
5	Evidence for the involvement of opioid and cannabinoid systems in the peripheral antinociception mediated by resveratrol. Toxicology and Applied Pharmacology, 2019, 369, 30-38.	1.3	9
6	Treatment with Apocynin Limits the Development of Acute Graft-versus-Host Disease in Mice. Journal of Immunology Research, 2019, 2019, 1-14.	0.9	6
7	Serotonin induces peripheral antinociception via the opioidergic system. Biomedicine and Pharmacotherapy, 2018, 97, 1434-1437.	2.5	16
8	Noradrenaline induces peripheral antinociception by endogenous opioid release. Pharmacological Reports, 2018, 70, 784-788.	1.5	8
9	The Involvement of the Endocannabinoid System in the Peripheral Antinociceptive Action of Ketamine. Journal of Pain, 2018, 19, 487-495.	0.7	19
10	Inhibition of 5-lipoxygenase alleviates graft-versus-host disease. Journal of Experimental Medicine, 2017, 214, 3399-3415.	4.2	16
11	κ-Opioid receptor participates of NSAIDs peripheral antinociception. Neuroscience Letters, 2016, 622, 6-9.	1.0	17
12	Natural Diterpenes from Coffee, Cafestol, and Kahweol Induce Peripheral Antinoceception by Adrenergic System Interaction. Planta Medica, 2016, 82, 106-112.	0.7	1
13	Angiotensin-(1–7) through Mas receptor activation induces peripheral antinociception by interaction with adrenoreceptors. Peptides, 2015, 69, 80-85.	1.2	10
14	NSAIDs induce peripheral antinociception by interaction with the adrenergic system. Life Sciences, 2015, 130, 7-11.	2.0	17
15	Serotonin induces peripheral mechanical antihyperalgesic effects in mice. European Journal of Pharmacology, 2015, 767, 94-97.	1.7	19
16	Nanocomposite Treatment Reduces Disease and Lethality in a Murine Model of Acute Graft-versus-Host Disease and Preserves Anti-Tumor Effects. PLoS ONE, 2015, 10, e0123004.	1.1	10
17	Encapsulated mesenchymal stem cells for in vivo immunomodulation. Leukemia, 2013, 27, 500-503.	3.3	67
18	Lithothamnion muelleri Controls Inflammatory Responses, Target Organ Injury and Lethality Associated with Graft-versus-Host Disease in Mice. Marine Drugs, 2013, 11, 2595-2615.	2.2	12

#	Article	IF	CITATIONS
19	Platelet-activating factor receptor plays a role in the pathogenesis of graft-versus-host disease by regulating leukocyte recruitment, tissue injury, and lethality. Journal of Leukocyte Biology, 2012, 91, 629-639.	1.5	18
20	Control of murine Ly6Chigh monocyte traffic and immunosuppressive activities by atypical chemokine receptor D6. Blood, 2012, 119, 5250-5260.	0.6	33
21	The Role of Chemokines in Mediating Graft Versus Host Disease: Opportunities for Novel Therapeutics. Frontiers in Pharmacology, 2012, 3, 23.	1.6	30
22	$PI3K\hat{I}^3$ controls leukocyte recruitment, tissue injury, and lethality in a model of graft-versus-host disease in mice. Journal of Leukocyte Biology, 2011, 89, 955-964.	1.5	23
23	The CCL3/Macrophage Inflammatory Protein-1α–Binding Protein Evasin-1 Protects from Graft-versus-Host Disease but Does Not Modify Graft-versus-Leukemia in Mice. Journal of Immunology, 2010, 184, 2646-2654.	0.4	51
24	Treatment with a Novel Chemokine-Binding Protein or Eosinophil Lineage-Ablation Protects Mice from Experimental Colitis. American Journal of Pathology, 2009, 175, 2382-2391.	1.9	85