
## Elizabeth B Oliveira-Sales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9158630/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Creatine Supplementation in Type 2 Diabetic Patients: A Systematic Review of Randomized Clinical<br>Trials. Current Diabetes Reviews, 2022, 18, .                                                                             | 0.6 | 1         |
| 2  | Treatment with Mesenchymal Stem Cells Improves Renovascular Hypertension and Preserves the<br>Ability of the Contralateral Kidney to Excrete Sodium. Kidney and Blood Pressure Research, 2019, 44,<br>1404-1415.              | 0.9 | 9         |
| 3  | Sympathetic overactivity occurs before hypertension in the twoâ€kidney, oneâ€clip model. Experimental<br>Physiology, 2016, 101, 67-80.                                                                                        | 0.9 | 43        |
| 4  | Mesenchymal stem cells and chronic renal artery stenosis. American Journal of Physiology - Renal<br>Physiology, 2016, 310, F6-F9.                                                                                             | 1.3 | 19        |
| 5  | Effects of mesenchymal stem cells in renovascular hypertension. Experimental Physiology, 2015, 100, 491-495.                                                                                                                  | 0.9 | 5         |
| 6  | Renal nerve stimulation leads to the activation of the Na <sup>+</sup> /H <sup>+</sup> exchanger<br>isoform 3 via angiotensin II type I receptor. American Journal of Physiology - Renal Physiology, 2015,<br>308, F848-F856. | 1.3 | 42        |
| 7  | Stem Cells Improved Renovascular Hypertension Independently of the Change of Renal Water and<br>Sodium Transporters. FASEB Journal, 2015, 29, 960.17.                                                                         | 0.2 | 0         |
| 8  | Mesenchymal Stem Cells (MSC) Improve Both Stenotic and Contralateral Kidneys in the Renovascular<br>Hypertension. FASEB Journal, 2015, 29, 960.15.                                                                            | 0.2 | 0         |
| 9  | Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats. Autonomic Neuroscience: Basic and Clinical, 2014, 183, 23-29.                                        | 1.4 | 51        |
| 10 | Losartan Reduces Oxidative Stress Within the Rostral Ventrolateral Medulla of Rats With<br>Renovascular Hypertension. American Journal of Hypertension, 2013, 26, 858-865.                                                    | 1.0 | 39        |
| 11 | Mesenchymal Stem Cells (MSC) Prevented the Progression of Renovascular Hypertension, Improved Renal Function and Architecture. PLoS ONE, 2013, 8, e78464.                                                                     | 1.1 | 60        |
| 12 | Mesenchymal stem cells attenuate renal inflammation, microvascular rarefaction and fibrosis in the renovascular hypertension rat model FASEB Journal, 2013, 27, 1147.2.                                                       | 0.2 | 0         |
| 13 | Renal molecular reponses elicited by electrical stimulation of sympathetic renal nerve in wistar rats.<br>FASEB Journal, 2013, 27, 695.11.                                                                                    | 0.2 | 0         |
| 14 | Upregulation of junctional adhesion molecule-A is a putative prognostic marker of hypertension.<br>Cardiovascular Research, 2012, 96, 552-560.                                                                                | 1.8 | 29        |
| 15 | The role of oxidative stress in renovascular hypertension. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 144-152.                                                                                          | 0.9 | 51        |
| 16 | Role of the Rostral Ventrolateral Medulla in the Arterial Hypertension in Chronic Renal Failure.<br>International Journal of Hypertension, 2010, 2010, 1-6.                                                                   | 0.5 | 6         |
| 17 | Kidney-Induced Hypertension Depends on Superoxide Signaling in the Rostral Ventrolateral Medulla.<br>Hypertension, 2010, 56, 290-296.                                                                                         | 1.3 | 67        |
| 18 | Elevated sympathetic activity precedes the arterial hypertension in the Goldblatt model. FASEB<br>Journal, 2010, 24, 982.4.                                                                                                   | 0.2 | 0         |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chronic Superoxide Signaling in the Rostral Ventrolateral Medulla (RVLM) is Essential For Goldblatt<br>Hypertension. FASEB Journal, 2010, 24, 809.3.                          | 0.2 | Ο         |
| 20 | Oxidative Stress in the Sympathetic Premotor Neurons Contributes to Sympathetic Activation in Renovascular Hypertension. American Journal of Hypertension, 2009, 22, 484-492. | 1.0 | 134       |
| 21 | Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in conscious rats. FASEB Journal, 2009, 23, 1017.16.          | 0.2 | 0         |
| 22 | Oxidative Stress Contributes to Renovascular Hypertension. American Journal of Hypertension, 2008, 21, 98-104.                                                                | 1.0 | 87        |