Yong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/915833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnology for Biofuels, 2014, 7, 5.	6.2	74
2	Nano-Biocatalysts of Cyt <i>c</i> @ZIF-8/GO Composites with High Recyclability via a de Novo Approach. ACS Applied Materials & Interfaces, 2018, 10, 16066-16076.	8.0	74
3	Production of butanol from glucose and xylose with immobilized cells of Clostridium acetobutylicum. Biotechnology and Bioprocess Engineering, 2013, 18, 234-241.	2.6	67
4	Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose. Green Chemistry, 2016, 18, 2165-2174.	9.0	67
5	Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption. Bioresource Technology, 2013, 129, 321-328.	9.6	62
6	Enhancement of n-butanol production by in situ butanol removal using permeating–heating–gas stripping in acetone–butanol–ethanol fermentation. Bioresource Technology, 2014, 164, 276-284.	9.6	53
7	Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresource Technology, 2014, 174, 190-197.	9.6	46
8	Effect of potassium on the pyrolysis of biomass components: Pyrolysis behaviors, product distribution and kinetic characteristics. Waste Management, 2021, 121, 255-264.	7.4	44
9	Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam. Journal of Biotechnology, 2018, 276-277, 1-9.	3.8	42
10	Metalloâ€Deuteroporphyrin as a Biomimetic Catalyst for the Catalytic Oxidation of Lignin to Aromatics. ChemSusChem, 2015, 8, 1768-1778.	6.8	41
11	Biochemical characterization of a novel azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. International Journal of Biological Macromolecules, 2019, 140, 1037-1046.	7.5	40
12	A mild and highly efficient laccase-mediator system for aerobic oxidation of alcohols. Green Chemistry, 2014, 16, 1131-1138.	9.0	39
13	Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum. Metabolic Engineering, 2015, 27, 107-114.	7.0	38
14	Surface functionalization of graphene oxide by amino acids for Thermomyces lanuginosus lipase adsorption. Journal of Colloid and Interface Science, 2019, 546, 211-220.	9.4	38
15	Stability and repeatability improvement of horseradish peroxidase by immobilization on amino-functionalized bacterial cellulose. Process Biochemistry, 2019, 79, 40-48.	3.7	37
16	Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation. Frontiers in Microbiology, 2015, 6, 139.	3.5	36
17	Ethanol Production by Repeated Batch and Continuous Fermentations by Saccharomyces cerevisiae Immobilized in a Fibrous Bed Bioreactor. Journal of Microbiology and Biotechnology, 2013, 23, 511-517.	2.1	36
18	Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie Van Leeuwenhoek, 2020, 113, 1263-1278.	1.7	34

#	Article	IF	CITATIONS
19	D-Lactic Acid Production by Sporolactobacillus inulinus Y2-8 Immobilized in Fibrous Bed Bioreactor Using Corn Flour Hydrolyzate. Journal of Microbiology and Biotechnology, 2014, 24, 1664-1672.	2.1	30
20	Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells. Journal of Biotechnology, 2016, 218, 1-12.	3.8	27
21	FLO Genes Family and Transcription Factor MIG1 Regulate Saccharomyces cerevisiae Biofilm Formation During Immobilized Fermentation. Frontiers in Microbiology, 2018, 9, 1860.	3.5	26
22	Efficient nanobiocatalytic systems of nuclease P immobilized on PEG-NH2 modified graphene oxide: effects of interface property heterogeneity. Colloids and Surfaces B: Biointerfaces, 2016, 145, 785-794.	5.0	25
23	A novel immobilization method for nuclease P1 on macroporous absorbent resin with glutaraldehyde cross-linking and determination of its properties. Process Biochemistry, 2012, 47, 665-670.	3.7	24
24	The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5′-monophosphate by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 86, 75-81.	3.6	23
25	Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm. Applied Microbiology and Biotechnology, 2021, 105, 3635-3648.	3.6	23
26	Extracellular polymer substances and the heterogeneity of Clostridium acetobutylicum biofilm induced tolerance to acetic acid and butanol. RSC Advances, 2016, 6, 33695-33704.	3.6	22
27	Efficient decolorization of citric acid fermentation broth using carbon materials prepared from phosphoric acid activation of hydrothermally treated corncob. RSC Advances, 2017, 7, 37112-37121.	3.6	22
28	Efficient Biofilm-Based Fermentation Strategies for L-Threonine Production by Escherichia coli. Frontiers in Microbiology, 2019, 10, 1773.	3.5	22
29	Towards acetone-uncoupled biofuels production in solventogenic Clostridium through reducing power conservation. Metabolic Engineering, 2018, 47, 102-112.	7.0	21
30	Co-localization of glucose oxidase and catalase enabled by a self-assembly approach: Matching between molecular dimensions and hierarchical pore sizes. Food Chemistry, 2019, 275, 197-205.	8.2	21
31	Recovery of lactic acid from the pretreated fermentation broth based on a novel hyper-cross-linked meso-micropore resin: Modeling. Bioresource Technology, 2017, 241, 593-602.	9.6	20
32	Preparation of a Copper Polyphosphate Kinase Hybrid Nanoflower and Its Application in ADP Regeneration from AMP. ACS Omega, 2020, 5, 9991-9998.	3.5	20
33	Immobilization of <i>Clostridium acetobutylicum</i> onto natural textiles and its fermentation properties. Microbial Biotechnology, 2017, 10, 502-512.	4.2	19
34	Bio-butanol sorption performance on novel porous-carbon adsorbents from corncob prepared via hydrothermal carbonization and post-pyrolysis method. Scientific Reports, 2017, 7, 11753.	3.3	19
35	Overexpression of THI4 and HAP4 Improves Glucose Metabolism and Ethanol Production in Saccharomyces cerevisiae. Frontiers in Microbiology, 2018, 9, 1444.	3.5	19
36	Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins. Biotechnology for Biofuels, 2018, 11, 315.	6.2	18

#	Article	IF	CITATIONS
37	Nitric oxide increases biofilm formation in Saccharomyces cerevisiae by activating the transcriptional factor Mac1p and thereby regulating the transmembrane protein Ctr1. Biotechnology for Biofuels, 2019, 12, 30.	6.2	18
38	Determination of Metastable Zone Widths and the Primary Nucleation and Growth Mechanisms for the Crystallization of Disodium Guanosine 5â€2-Monophosphate from a Water–Ethanol System. Industrial & Engineering Chemistry Research, 2015, 54, 137-145.	3.7	17
39	Enhancement of nuclease P1 production by Penicillium citrinum YL104 immobilized on activated carbon filter sponge. Applied Microbiology and Biotechnology, 2015, 99, 1145-1153.	3.6	17
40	Affinity induced immobilization of adenylate cyclase from the crude cell lysate for ATP conversion. Colloids and Surfaces B: Biointerfaces, 2018, 164, 155-164.	5.0	16
41	Immobilization of a polyphosphate kinase 2 by coordinative self-assembly of his-tagged units with metal-organic frameworks and its application in ATP regeneration from AMP. Colloids and Surfaces B: Biointerfaces, 2019, 181, 261-269.	5.0	16
42	A water-forming NADH oxidase regulates metabolism in anaerobic fermentation. Biotechnology for Biofuels, 2016, 9, 103.	6.2	15
43	Efficient multi-enzyme-catalyzed CDP-choline production driven by an ATP donor module. Applied Microbiology and Biotechnology, 2017, 101, 1409-1417.	3.6	15
44	Feasibility of ethanol production from expired rice by surface immobilization technology in a new type of packed bed pilot reactor. Renewable Energy, 2020, 149, 321-328.	8.9	15
45	Light Signaling Regulates Aspergillus niger Biofilm Formation by Affecting Melanin and Extracellular Polysaccharide Biosynthesis. MBio, 2021, 12, .	4.1	15
46	Experimental Determination of Metastable Zone Width, Induction Period, and Primary Nucleation Kinetics of Cytidine 5′-Monophosphate Disodium Salt in an Ethanol–Aqueous Mixture. Journal of Chemical & Engineering Data, 2013, 58, 1244-1248.	1.9	14
47	Biofilm-based fermentation: a novel immobilisation strategy for Saccharomyces cerevisiae cell cycle progression during ethanol production. Applied Microbiology and Biotechnology, 2020, 104, 7495-7505.	3.6	14
48	Long-Term Production of Fuel Ethanol by Immobilized Yeast in Repeated-Batch Simultaneous Saccharification and Fermentation of Cassava. Energy & Fuels, 2015, 29, 185-190.	5.1	13
49	Efficient immobilization of AGE and NAL enzymes onto functional amino resin as recyclable and high-performance biocatalyst. Bioprocess and Biosystems Engineering, 2017, 40, 331-340.	3.4	13
50	Calcineurin signaling pathway influences Aspergillus niger biofilm formation by affecting hydrophobicity and cell wall integrity. Biotechnology for Biofuels, 2020, 13, 54.	6.2	12
51	In Vivo Multienzyme Complex Coconstruction ofN-Acetylneuraminic Acid Lyase andN-Acetylglucosamine-2-epimerase for Biosynthesis ofN-Acetylneuraminic Acid. Journal of Agricultural and Food Chemistry, 2017, 65, 7467-7475.	5.2	11
52	Efficient Biofilm-Based Fermentation Strategies by eDNA Formation for <scp> </scp> -Proline Production with <i>Corynebacterium glutamicum</i> . ACS Omega, 2020, 5, 33314-33322.	3.5	11
53	Nonsterile <scp>l</scp> -Lysine Fermentation Using Engineered Phosphite-Grown <i>Corynebacterium glutamicum</i> . ACS Omega, 2021, 6, 10160-10167.	3.5	11
54	Determination of optimal conditions for ribonucleic acid production by Candida tropicalis no. 121. Korean Journal of Chemical Engineering, 2011, 28, 1721-1726.	2.7	10

#	Article	IF	CITATIONS
55	Synthesis, adsorption and molecular simulation study of methylamine-modified hyper-cross-linked resins for efficient removal of citric acid from aqueous solution. Scientific Reports, 2020, 10, 9623.	3.3	10
56	Biofilm-Related, Time-Series Transcriptome and Genome Sequencing in Xylanase-Producing Aspergillus niger SJ1. ACS Omega, 2020, 5, 19737-19746.	3.5	9
57	Enhanced adenosine triphosphate production by Saccharomyces cerevisiae using an efficient energy regeneration system. Korean Journal of Chemical Engineering, 2011, 28, 178-183.	2.7	8
58	Overexpression of a Water-Forming NADH Oxidase Improves the Metabolism and Stress Tolerance of Saccharomyces cerevisiae in Aerobic Fermentation. Frontiers in Microbiology, 2016, 7, 1427.	3.5	8
59	Comparative transcriptomic and proteomic analysis of Arthrobacter sp. CGMCC 3584 responding to dissolved oxygen for cAMP production. Scientific Reports, 2018, 8, 1246.	3.3	8
60	Application of electrodialysis to extract 5′-ribonucleotides from hydrolysate: efficient decolorization and membrane fouling. RSC Advances, 2018, 8, 29115-29128.	3.6	7
61	Efficient preparation of phytase from genetically modified Pichia pastoris in immobilised fermentation biofilms adsorbed on surface-modified cotton fibres. Process Biochemistry, 2021, 111, 69-69.	3.7	7
62	RNA accumulation in <i>Candida tropicalis</i> based on cofactor engineering. FEMS Yeast Research, 2019, 19, .	2.3	6
63	Production of cyclic adenosine-3′,5′-monophosphate by whole cell catalysis using recombinant Escherichia coli overexpressing adenylate cyclase. Korean Journal of Chemical Engineering, 2013, 30, 913-917.	2.7	5
64	Control of glycolytic flux in directed biosynthesis of uridine-phosphoryl compounds through the manipulation of ATP availability. Applied Microbiology and Biotechnology, 2014, 98, 6621-6632.	3.6	5
65	Combined ion exchange and adsorption equilibria of 5′-ribonucleotides on the strong acid cation exchange resin NH-1. Journal of Chemical Technology and Biotechnology, 2017, 92, 1678-1689.	3.2	5
66	Competitive adsorption of vanillin and syringaldehyde on a macro-mesopore polymeric resin: modeling. Bioprocess and Biosystems Engineering, 2019, 42, 1435-1445.	3.4	5
67	Knockout of pde gene in Arthrobacter sp. CGMCC 3584 and transcriptomic analysis of its effects on cAMP production. Bioprocess and Biosystems Engineering, 2020, 43, 839-850.	3.4	5
68	Clostridium acetobutylicum Biofilm: Advances in Understanding the Basis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 658568.	4.1	5
69	Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 577-583.	3.0	3
70	pH-Neutralization, Redox-Balanced Process with Coupled Formate Dehydrogenase and Glucose Dehydrogenase Supports Efficient Xylitol Production in Pure Water. Journal of Agricultural and Food Chemistry, 2020, 68, 235-241.	5.2	3
71	Feasibility Study on Long-Term Continuous Ethanol Production from Cassava Supernatant by Immobilized Yeast Cells in Packed Bed Reactor. Journal of Microbiology and Biotechnology, 2020, 30, 1227-1234.	2.1	3
72	Model-based design of an intermittent simulated moving bed process for recovering lactic acid from ternary mixture. Journal of Chromatography A, 2018, 1562, 47-58.	3.7	2

#	Article	IF	CITATIONS
73	Cell Cycle Progression Influences Biofilm Formation in Saccharomyces cerevisiae 1308. Microbiology Spectrum, 0, , .	3.0	2
74	Screening of promoters from Arthrobacter sp. CGMCC 3584 using a green fluorescent protein reporter system. World Journal of Microbiology and Biotechnology, 2017, 33, 208.	3.6	1
75	Biochemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 929-993.	4.4	1
76	Identification of a sensor histidine kinase (BfcK) controlling biofilm formation in Clostridium acetobutylicum. Chinese Journal of Chemical Engineering, 2022, 46, 84-93.	3.5	1
77	An Energy-Rich Phosphate Compound Enhances the Growth of Lettuce Through the Activation of Photosynthesis, Growth, and Induced Systemic Resistance–Related Processes. Journal of Soil Science and Plant Nutrition, 2022, 22, 1955-1969.	3.4	1