
## Herman P Spaink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9158190/publications.pdf Version: 2024-02-01



HEDMAN D SDAINK

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The ubiquitous catechol moiety elicits siderophore and angucycline production in Streptomyces.<br>Communications Chemistry, 2022, 5, .                                                                                                    | 2.0  | 9         |
| 2  | The Role of TLR2 in Infectious Diseases Caused by Mycobacteria: From Cell Biology to Therapeutic Target. Biology, 2022, 11, 246.                                                                                                          | 1.3  | 24        |
| 3  | Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe. Chemical Science, 2022, 13, 5539-5545.                                                                     | 3.7  | 12        |
| 4  | Host-directed therapies for tuberculosis: quantitative systems pharmacology approaches. Trends in<br>Pharmacological Sciences, 2022, 43, 293-304.                                                                                         | 4.0  | 8         |
| 5  | Thermal Proteome Profiling in Zebrafish Reveals Effects of Napabucasin on Retinoic Acid Metabolism.<br>Molecular and Cellular Proteomics, 2021, 20, 100033.                                                                               | 2.5  | 8         |
| 6  | Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. Biology, 2021, 10, 96.                                                                                                                                             | 1.3  | 54        |
| 7  | Antibiofilm effect of C-10 massoia lactone toward polymicrobial oral biofilms. Journal of Advanced Pharmaceutical Technology and Research, 2021, 12, 89.                                                                                  | 0.4  | 2         |
| 8  | A Novel Function of TLR2 and MyD88 in the Regulation of Leukocyte Cell Migration Behavior During<br>Wounding in Zebrafish Larvae. Frontiers in Cell and Developmental Biology, 2021, 9, 624571.                                           | 1.8  | 9         |
| 9  | The adapter protein Myd88 plays an important role in limiting mycobacterial growth in a zebrafish<br>model for tuberculosis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur<br>Klinische Medizin, 2021, 479, 265-275. | 1.4  | 5         |
| 10 | A quantitative in vivo assay for craniofacial developmental toxicity of histone deacetylases.<br>Toxicology Letters, 2021, 342, 20-25.                                                                                                    | 0.4  | 3         |
| 11 | Leptin deficiency affects glucose homeostasis and results in adiposity in zebrafish. Journal of Endocrinology, 2021, 249, 125-134.                                                                                                        | 1.2  | 11        |
| 12 | Zebrafish larvae as experimental model to expedite the search for new biomarkers and treatments for neonatal sepsis. Journal of Clinical and Translational Science, 2021, 5, 1-34.                                                        | 0.3  | 3         |
| 13 | Metabolomic and transcriptomic profiling of adult mice and larval zebrafish leptin mutants reveal a<br>common pattern of changes in metabolites and signaling pathways. Cell and Bioscience, 2021, 11, 126.                               | 2.1  | 4         |
| 14 | The Role of Galanin during Bacterial Infection in Larval Zebrafish. Cells, 2021, 10, 2011.                                                                                                                                                | 1.8  | 2         |
| 15 | Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 2021, 590, 284-289.                                                                                                                                         | 13.7 | 132       |
| 16 | Investigation of the interaction of DAD1-LIKE LIPASE 3 (DALL3) with Selenium Binding Protein 1 (SBP1) in<br>Arabidopsis thaliana. Plant Science, 2020, 291, 110357.                                                                       | 1.7  | 9         |
| 17 | Tuberculosis causes highly conserved metabolic changes in human patients, mycobacteria-infected<br>mice and zebrafish larvae. Scientific Reports, 2020, 10, 11635.                                                                        | 1.6  | 15        |
| 18 | Transcriptome sequencing supports a conservation of macrophage polarization in fish. Scientific Reports, 2020, 10, 13470.                                                                                                                 | 1.6  | 28        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Antiâ€ŧuberculosis effect of isoniazid scales accurately from zebrafish to humans. British Journal of<br>Pharmacology, 2020, 177, 5518-5533.                                                                                               | 2.7 | 10        |
| 20 | Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo<br>Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Frontiers in Immunology, 2020, 11,<br>36.                                   | 2.2 | 34        |
| 21 | Quantification of Natural Growth of Two Strains of <i>Mycobacterium Marinum</i> for<br>Translational Antituberculosis Drug Development. Clinical and Translational Science, 2020, 13,<br>1060-1064.                                        | 1.5 | 5         |
| 22 | Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity. Nanotoxicology,<br>2020, 14, 725-739.                                                                                                                 | 1.6 | 14        |
| 23 | Analyzing the impact of Mycobacterium tuberculosis infection on primary human macrophages by combined exploratory and targeted metabolomics. Scientific Reports, 2020, 10, 7085.                                                           | 1.6 | 27        |
| 24 | Glomerular permeability is not affected by heparan sulfate glycosaminoglycan deficiency in zebrafish<br>embryos. American Journal of Physiology - Renal Physiology, 2019, 317, F1211-F1216.                                                | 1.3 | 10        |
| 25 | Novel interactions of Selenium Binding Protein family with the PICOT containing proteins AtGRXS14 and AtGRXS16 in Arabidopsis thaliana. Plant Science, 2019, 281, 102-112.                                                                 | 1.7 | 8         |
| 26 | Predicting Metabolism from Gene Expression in an Improved Whole-Genome Metabolic Network Model<br>of <i>Danio rerio</i> . Zebrafish, 2019, 16, 348-362.                                                                                    | 0.5 | 20        |
| 27 | Nano-Sampling and Reporter Tools to Study Metabolic Regulation in Zebrafish. Frontiers in Cell and<br>Developmental Biology, 2019, 7, 15.                                                                                                  | 1.8 | 6         |
| 28 | RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11 Chemokine Gene as a<br>Marker of Macrophage Polarization During Mycobacterial Infection. Frontiers in Immunology, 2019,<br>10, 832.                         | 2.2 | 76        |
| 29 | Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte<br>Neoplasia Progression in Zebrafish. Cancer Research, 2019, 79, 2136-2151.                                                                        | 0.4 | 24        |
| 30 | Impact of post-hatching maturation on the pharmacokinetics of paracetamol in zebrafish larvae.<br>Scientific Reports, 2019, 9, 2149.                                                                                                       | 1.6 | 22        |
| 31 | Mechanistic and Quantitative Understanding of Pharmacokinetics in Zebrafish Larvae through<br>Nanoscale Blood Sampling and Metabolite Modeling of Paracetamol. Journal of Pharmacology and<br>Experimental Therapeutics, 2019, 371, 15-24. | 1.3 | 24        |
| 32 | Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like<br>receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection.<br>BMC Genomics, 2019, 20, 878.    | 1.2 | 21        |
| 33 | <i>InÂvivo</i> inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activityâ€based protein profiling. FEBS Journal, 2019, 286, 584-600.                                                                 | 2.2 | 44        |
| 34 | A Zebrafish Embryo Model for In Vivo Visualization and Intravital Analysis of Biomaterial-associated<br><em>Staphylococcus aureus</em> Infection. Journal of Visualized Experiments, 2019, , .                                             | 0.2 | 2         |
| 35 | Deep learning image recognition enables efficient genome editing in zebrafish by automated injections.<br>PLoS ONE, 2019, 14, e0202377.                                                                                                    | 1.1 | 20        |
| 36 | Increased dynamin expression precedes proteinuria in glomerular disease. Journal of Pathology, 2019,<br>247, 177-185.                                                                                                                      | 2.1 | 11        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos.<br>Environmental Science: Nano, 2018, 5, 904-916.                                                                       | 2.2 | 86        |
| 38 | A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death and Differentiation, 2018, 25, 2165-2180.                                                                                     | 5.0 | 78        |
| 39 | Identifying small RNAs derived from maternal- and somatic-type rRNAs in zebrafish development.<br>Genome, 2018, 61, 371-378.                                                                                            | 0.9 | 23        |
| 40 | COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.<br>Journal of Proteome Research, 2018, 17, 739-744.                                                                         | 1.8 | 1         |
| 41 | Biological clock function is linked to proactive and reactive personality types. BMC Biology, 2018, 16, 148.                                                                                                            | 1.7 | 30        |
| 42 | Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nature Communications, 2018, 9, 4099.                                                                | 5.8 | 73        |
| 43 | smarce1 mutants have a defective endocardium and an increased expression of cardiac transcription factors in zebrafish. Scientific Reports, 2018, 8, 15369.                                                             | 1.6 | 9         |
| 44 | An automated screening method for detecting compounds with goitrogenic activity using transgenic zebrafish embryos. PLoS ONE, 2018, 13, e0203087.                                                                       | 1.1 | 26        |
| 45 | Performing DNA nanotechnology operations on a zebrafish. Chemical Science, 2018, 9, 7271-7276.                                                                                                                          | 3.7 | 17        |
| 46 | Outsideâ€In Systems Pharmacology Combines Innovative Computational Methods With Highâ€Throughput<br>Whole Vertebrate Studies. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 285-287.                          | 1.3 | 13        |
| 47 | Cross-species Discovery of Flubendazole against Melanoma Progression via MITF Downregulation and<br>EMT Inhibition. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018,<br>WCP2018, PO4-6-31. | 0.0 | 0         |
| 48 | Abstract 500: A p53/miR-30a/ZEB2 axis controls basal-like/triple-negative breast cancer aggressiveness. ,<br>2018, , .                                                                                                  |     | 0         |
| 49 | Abstract 4109: Multi-modality imaging to interrogate lipidome changes during melanoma progression in zebrafish. , 2018, , .                                                                                             |     | 0         |
| 50 | Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish<br>development. Rna, 2017, 23, 1188-1199.                                                                                    | 1.6 | 89        |
| 51 | The zebrafish embryo as a model to quantify early inflammatory cell responses to biomaterials.<br>Journal of Biomedical Materials Research - Part A, 2017, 105, 2522-2532.                                              | 2.1 | 11        |
| 52 | Functional analysis reveals no transcriptional role for the glucocorticoid receptor Î <sup>2</sup> -isoform in zebrafish. Molecular and Cellular Endocrinology, 2017, 447, 61-70.                                       | 1.6 | 18        |
| 53 | Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. Rna, 2017, 23, 446-456.                                                                                           | 1.6 | 32        |
| 54 | Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Scientific<br>Reports, 2017, 7, 7213.                                                                                                 | 1.6 | 104       |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hoxc6 loss of function truncates the main body axis in Xenopus. Cell Cycle, 2017, 16, 1136-1138.                                                                                                                                | 1.3 | 7         |
| 56 | Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model<br>systems to screen for developmental and reproductive toxicity of Piperazine compounds. Toxicology<br>in Vitro, 2017, 44, 11-16. | 1.1 | 21        |
| 57 | Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish<br>larvae. Aquatic Toxicology, 2017, 190, 112-120.                                                                          | 1.9 | 131       |
| 58 | Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. BMC Genomics, 2017, 18, 287.                                        | 1.2 | 12        |
| 59 | Multi-modal 3d reconstruction and measurements of zebrafish larvae and its organs using axial-view microscopy. , 2017, , .                                                                                                      |     | 0         |
| 60 | Three-dimensional reconstruction and measurements of zebrafish larvae from high-throughput axial-view in vivo imaging. Biomedical Optics Express, 2017, 8, 2611.                                                                | 1.5 | 33        |
| 61 | Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis.<br>PLoS ONE, 2017, 12, e0175287.                                                                                           | 1.1 | 18        |
| 62 | De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing.<br>F1000Research, 2017, 6, 618.                                                                                                           | 0.8 | 7         |
| 63 | De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing.<br>F1000Research, 2017, 6, 618.                                                                                                           | 0.8 | 5         |
| 64 | Mother-Specific Signature in the Maternal Transcriptome Composition of Mature, Unfertilized Zebrafish Eggs. PLoS ONE, 2016, 11, e0147151.                                                                                       | 1.1 | 33        |
| 65 | Glucocorticoid-Induced Attenuation of the Inflammatory Response in Zebrafish. Endocrinology, 2016, 157, 2772-2784.                                                                                                              | 1.4 | 67        |
| 66 | Automation of Technology for Cancer Research. Advances in Experimental Medicine and Biology, 2016, 916, 315-332.                                                                                                                | 0.8 | 5         |
| 67 | Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model. Advances in Experimental<br>Medicine and Biology, 2016, 916, 239-263.                                                                                   | 0.8 | 31        |
| 68 | Transcriptomic Approaches in the Zebrafish Model for Tuberculosis—Insights Into Host- and<br>Pathogen-specific Determinants of the Innate Immune Response. Advances in Genetics, 2016, 95, 217-251.                             | 0.8 | 32        |
| 69 | Efferocytosis and extrusion of leukocytes determine the progression of early mycobacterial pathogenesis. Journal of Cell Science, 2016, 129, 3385-95.                                                                           | 1.2 | 30        |
| 70 | Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft<br>Model. ACS Nano, 2016, 10, 7428-7435.                                                                                  | 7.3 | 66        |
| 71 | Imaging of Human Cancer Cell Proliferation, Invasion, and Micrometastasis in a Zebrafish Xenogeneic<br>Engraftment Model. Methods in Molecular Biology, 2016, 1451, 155-169.                                                    | 0.4 | 17        |
| 72 | A full-body transcriptome and proteome resource for the European common carp. BMC Genomics, 2016, 17, 701.                                                                                                                      | 1.2 | 55        |

| #  | Article                                                                                                                                                                                         | IF              | CITATIONS           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| 73 | Pharmacokinetic Modeling of Paracetamol Uptake and Clearance in Zebrafish Larvae: Expanding the<br>Allometric Scale in Vertebrates with Five Orders of Magnitude. Zebrafish, 2016, 13, 504-510. | 0.5             | 66                  |
| 74 | Systems pharmacology of hepatic metabolism in zebrafish larvae. Drug Discovery Today: Disease<br>Models, 2016, 22, 27-34.                                                                       | 1.2             | 31                  |
| 75 | Transcriptome data on maternal RNA of 24 individual zebrafish eggs from five sibling mothers. Data in<br>Brief, 2016, 8, 69-72.                                                                 | 0.5             | 1                   |
| 76 | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).<br>Autophagy, 2016, 12, 1-222.                                                                      | 4.3             | 4,701               |
| 77 | Visualizing Human Hematopoietic Stem Cell Trafficking In Vivo Using a Zebrafish Xenograft Model.<br>Stem Cells and Development, 2016, 25, 360-365.                                              | 1.1             | 30                  |
| 78 | Polarization of immune responses in fish: The â€~macrophages first' point of view. Molecular<br>Immunology, 2016, 69, 146-156.                                                                  | 1.0             | 128                 |
| 79 | Changes in ovarian gene expression profiles and plasma hormone levels in maturing European eel () Tj ETQq1 1 (<br>2016, 225, 185-196.                                                           | 0.784314<br>0.8 | rgBT /Overloc<br>19 |
| 80 | Silhouette-based 3D model for zebrafish high-throughput imaging. , 2015, , .                                                                                                                    |                 | 4                   |
| 81 | The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. DMM Disease Models and Mechanisms, 2015, 8, 253-69.                               | 1.2             | 129                 |
| 82 | Testing Tuberculosis Drug Efficacy in a Zebrafish High-Throughput Translational Medicine Screen.<br>Antimicrobial Agents and Chemotherapy, 2015, 59, 753-762.                                   | 1.4             | 52                  |
| 83 | Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology, 2015, 25, 469-482.                                     | 1.3             | 58                  |
| 84 | Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics. Immunogenetics, 2015, 67, 135-147.                                            | 1.2             | 15                  |
| 85 | Improving small RNA-seq by using a synthetic spike-in set for size-range quality control together with<br>a set for data normalization. Nucleic Acids Research, 2015, 43, e89-e89.              | 6.5             | 35                  |
| 86 | Transcriptional and Metabolic Effects of Glucocorticoid Receptor α and β Signaling in Zebrafish.<br>Endocrinology, 2015, 156, 1757-1769.                                                        | 1.4             | 57                  |
| 87 | Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish. BMC Genomics, 2015, 16, 547.                                                 | 1.2             | 28                  |
| 88 | GLUT2-Mediated Glucose Uptake and Availability Are Required for Embryonic Brain Development in Zebrafish. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 74-85.                       | 2.4             | 40                  |
| 89 | Macrophage-Expressed Perforins Mpeg1 and Mpeg1.2 Have an Anti-Bacterial Function in Zebrafish.<br>Journal of Innate Immunity, 2015, 7, 136-152.                                                 | 1.8             | 102                 |
| 90 | GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. Journal of Endocrinology, 2015, 224, 1-15.                                           | 1.2             | 32                  |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Mycobacteria Counteract a TLR-Mediated Nitrosative Defense Mechanism in a Zebrafish Infection Model. PLoS ONE, 2014, 9, e100928.                                                                                            | 1.1 | 35        |
| 92  | Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model.<br>Autophagy, 2014, 10, 1844-1857.                                                                                           | 4.3 | 49        |
| 93  | Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. DMM Disease Models and Mechanisms, 2014, 7, 785-797.                                                       | 1.2 | 153       |
| 94  | Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII<br>Secretion. MBio, 2014, 5, e01744-14.                                                                               | 1.8 | 76        |
| 95  | Real-time imaging and genetic dissection of host-microbe interactions in zebrafish. Cellular<br>Microbiology, 2014, 16, 39-49.                                                                                              | 1.1 | 31        |
| 96  | Ewing sarcoma inhibition by disruption of <scp>EWSR1–FL1</scp> transcriptional activity and reactivation of p53. Journal of Pathology, 2014, 233, 415-424.                                                                  | 2.1 | 42        |
| 97  | Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish. BMC Genomics, 2014, 15, 1136.      | 1.2 | 67        |
| 98  | Identification and functional characterization of nonmammalian Toll-like receptor 20.<br>Immunogenetics, 2014, 66, 123-141.                                                                                                 | 1.2 | 38        |
| 99  | Zebrafish Brain Lipid Characterization and Quantification by <sup>1</sup> H Nuclear Magnetic Resonance Spectroscopy and MALDI-TOF Mass Spectrometry. Zebrafish, 2014, 11, 240-247.                                          | 0.5 | 13        |
| 100 | Comparative studies of Toll-like receptor signalling using zebrafish. Developmental and Comparative<br>Immunology, 2014, 46, 35-52.                                                                                         | 1.0 | 75        |
| 101 | Spatial and temporal expression patterns of chitinase genes in developing zebrafish embryos. Gene<br>Expression Patterns, 2014, 14, 69-77.                                                                                  | 0.3 | 19        |
| 102 | Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor<br>Marco, a key control factor of pro-inflammatory signalling. Developmental and Comparative<br>Immunology, 2014, 47, 223-233. | 1.0 | 44        |
| 103 | Identification of molecular markers in pectoral fin to predict artificial maturation of female<br>European eels (Anguilla anguilla). General and Comparative Endocrinology, 2014, 204, 267-276.                             | 0.8 | 15        |
| 104 | The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLR-MYD88 to Autophagic Defense. Cell Host and Microbe, 2014, 16, 141.                                                               | 5.1 | 0         |
| 105 | Identifying Proteins in Zebrafish Embryos Using Spectral Libraries Generated from Dissected Adult<br>Organs and Tissues. Journal of Proteome Research, 2014, 13, 1537-1544.                                                 | 1.8 | 18        |
| 106 | Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish.<br>Journal of Endocrinology, 2014, 222, 229-241.                                                                            | 1.2 | 47        |
| 107 | Advances in genomics of bony fish. Briefings in Functional Genomics, 2014, 13, 144-156.                                                                                                                                     | 1.3 | 24        |
| 108 | The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLR-MYD88 to Autophagic Defense. Cell Host and Microbe, 2014, 15, 753-767.                                                           | 5.1 | 147       |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Contrasted Innate Responses to Two Viruses in Zebrafish: Insights into the Ancestral Repertoire of<br>Vertebrate IFN-Stimulated Genes. Journal of Immunology, 2014, 192, 4328-4341.                                                          | 0.4 | 77        |
| 110 | Establishment and Optimization of a High Throughput Setup to Study <em>Staphylococcus<br/>epidermidis</em> and <em>Mycobacterium marinum</em> Infection as a Model for Drug Discovery.<br>Journal of Visualized Experiments, 2014, , e51649. | 0.2 | 21        |
| 111 | RNA Sequencing of FACS-Sorted Immune Cell Populations from Zebrafish Infection Models to Identify<br>Cell Specific Responses to Intracellular Pathogens. Methods in Molecular Biology, 2014, 1197, 261-274.                                  | 0.4 | 40        |
| 112 | The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. ELife, 2014, 3, .                                                                                                      | 2.8 | 68        |
| 113 | Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Archives of Toxicology, 2013, 87, 807-823.                                                           | 1.9 | 77        |
| 114 | A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics, 2013, 14, 255.                                                                                                    | 1.2 | 57        |
| 115 | Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Molecular Immunology, 2013, 56, 745-756.                                                                    | 1.0 | 38        |
| 116 | Rapid metabolic screening of early zebrafish embryogenesis based on direct infusion-nanoESI-FTMS.<br>Metabolomics, 2013, 9, 864-873.                                                                                                         | 1.4 | 21        |
| 117 | The embryonic expression patterns of zebrafish genes encoding LysM-domains. Gene Expression Patterns, 2013, 13, 212-224.                                                                                                                     | 0.3 | 21        |
| 118 | MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection. BMC Genomics, 2013, 14, 696.                                                                                     | 1.2 | 110       |
| 119 | Parallel deep transcriptome and proteome analysis of zebrafish larvae. BMC Research Notes, 2013, 6, 428.                                                                                                                                     | 0.6 | 14        |
| 120 | Functional analysis of a zebrafish <i>myd88</i> mutant identifies key transcriptional components of the innate immune system. DMM Disease Models and Mechanisms, 2013, 6, 841-54.                                                            | 1.2 | 145       |
| 121 | The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20651-20656.                                   | 3.3 | 412       |
| 122 | Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods, 2013, 62, 246-254.                                                                                                                          | 1.9 | 84        |
| 123 | In Vitro and In Vivo Supramolecular Modification of Biomembranes Using a Lipidated Coiled oil Motif.<br>Angewandte Chemie - International Edition, 2013, 52, 14247-14251.                                                                    | 7.2 | 54        |
| 124 | Deficiency in Hematopoietic Phosphatase Ptpn6/Shp1 Hyperactivates the Innate Immune System and<br>Impairs Control of Bacterial Infections in Zebrafish Embryos. Journal of Immunology, 2013, 190,<br>1631-1645.                              | 0.4 | 60        |
| 125 | Generation of Constitutive Active ERK Mutants as Tools for Cancer Research in Zebrafish. , 2013, 2013, 1-11.                                                                                                                                 |     | 2         |
| 126 | Deep RNA Sequencing of the Skeletal Muscle Transcriptome in Swimming Fish. PLoS ONE, 2013, 8, e53171.                                                                                                                                        | 1.1 | 62        |

| #   | Article                                                                                                                                                                                         | IF               | CITATIONS   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 127 | The Pituitary Gland of the European Eel Reveals Massive Expression of Genes Involved in the<br>Melanocortin System. PLoS ONE, 2013, 8, e77396.                                                  | 1.1              | 15          |
| 128 | Pathogen Recognition and Activation of the Innate Immune Response in Zebrafish. Advances in Hematology, 2012, 2012, 1-19.                                                                       | 0.6              | 157         |
| 129 | Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens. Journal of Visualized Experiments, 2012, , .                                                                             | 0.2              | 176         |
| 130 | Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery<br>in cell and zebrafish embryos. Nano Research, 2012, 5, 703-709.                       | 5.8              | 79          |
| 131 | Comparison of the Exomes of Common Carp ( <i>Cyprinus carpio</i> ) and Zebrafish ( <i>Danio) Tj ETQq1 1 0.784</i>                                                                               | •314_rgBT<br>0.5 | Overlock 10 |
| 132 | First draft genome sequence of the Japanese eel, Anguilla japonica. Gene, 2012, 511, 195-201.                                                                                                   | 1.0              | 99          |
| 133 | Primitive Duplicate Hox Clusters in the European Eel's Genome. PLoS ONE, 2012, 7, e32231.                                                                                                       | 1.1              | 128         |
| 134 | Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish. Proteins:<br>Structure, Function and Bioinformatics, 2012, 80, 1694-1698.                                | 1.5              | 31          |
| 135 | An osteosarcoma zebrafish model implicates <i>Mmpâ€19</i> and <i>Etsâ€1</i> as well as reduced host<br>immune response in angiogenesis and migration. Journal of Pathology, 2012, 227, 245-253. | 2.1              | 28          |
| 136 | Neutrophilâ€mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft<br>model. Journal of Pathology, 2012, 227, 431-445.                                       | 2.1              | 158         |
| 137 | Automated microinjection of cell-polymer suspensions in 3D ECM scaffolds for high-throughput quantitative cancer invasion screens. Biomaterials, 2012, 33, 181-188.                             | 5.7              | 50          |
| 138 | Quantitative bioassays for measuring biologically functional gonadotropins based on eel gonadotropic receptors. General and Comparative Endocrinology, 2012, 178, 145-152.                      | 0.8              | 14          |
| 139 | Using Multiobjective Optimization and Energy Minimization to Design an Isoform-Selective Ligand of the 14-3-3 Protein. Lecture Notes in Computer Science, 2012, , 12-24.                        | 1.0              | 4           |
| 140 | Automated Whole Animal Bio-Imaging Assay for Human Cancer Dissemination. PLoS ONE, 2012, 7, e31281.                                                                                             | 1.1              | 76          |
| 141 | Conserved Expression Signatures between Medaka and Human Pigment Cell Tumors. PLoS ONE, 2012, 7, e37880.                                                                                        | 1.1              | 35          |
| 142 | Quantification of GPCR internalization by single-molecule microscopy in living cells. Integrative<br>Biology (United Kingdom), 2011, 3, 675.                                                    | 0.6              | 26          |
| 143 | Infectious Disease Modeling and Innate Immune Function in Zebrafish Embryos. Methods in Cell<br>Biology, 2011, 105, 273-308.                                                                    | 0.5              | 86          |
| 144 | Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella<br>infection. Fish and Shellfish Immunology, 2011, 31, 716-724.                                 | 1.6              | 79          |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7, 4881.                                                                                                                                    | 1.2 | 113       |
| 146 | Random Scission of Polymers: Numerical Simulations, and Experiments on Hyaluronan Hydrolosis.<br>Macromolecules, 2011, 44, 2559-2567.                                                                                                 | 2.2 | 12        |
| 147 | A High-Throughput Screen for Tuberculosis Progression. PLoS ONE, 2011, 6, e16779.                                                                                                                                                     | 1.1 | 101       |
| 148 | Identification of Common Carp Innate Immune Genes with Whole-Genome Sequencing and RNA-Seq<br>Data. Journal of Integrative Bioinformatics, 2011, 8, 165-175.                                                                          | 1.0 | 23        |
| 149 | Rapid screening of innate immune gene expression in zebrafish using reverse transcription - multiplex<br>ligation-dependent probe amplification. BMC Research Notes, 2011, 4, 196.                                                    | 0.6 | 12        |
| 150 | Purification, crystallization and preliminary crystallographic studies of the TLDc domain of oxidation resistance protein 2 from zebrafish. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1253-1256. | 0.7 | 6         |
| 151 | First artificial hybrid of the eel species Anguilla australis and Anguilla anguilla. BMC Developmental<br>Biology, 2011, 11, 16.                                                                                                      | 2.1 | 28        |
| 152 | The epigenetic regulator Histone Deacetylase 1 promotes transcription of a core neurogenic programme in zebrafish embryos. BMC Genomics, 2011, 12, 24.                                                                                | 1.2 | 60        |
| 153 | Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunology, 2011, 12, 58.                                                          | 0.9 | 85        |
| 154 | A ΔRaf1–ERâ€inducible oncogenic zebrafish liver cell model identifies hepatocellular carcinoma<br>signatures. Journal of Pathology, 2011, 225, 19-28.                                                                                 | 2.1 | 18        |
| 155 | Zebrafish embryos and larvae: A new generation of disease models and drug screens. Birth Defects<br>Research Part C: Embryo Today Reviews, 2011, 93, 115-133.                                                                         | 3.6 | 196       |
| 156 | Host-Pathogen Interactions Made Transparent with the Zebrafish Model. Current Drug Targets, 2011, 12, 1000-1017.                                                                                                                      | 1.0 | 232       |
| 157 | Identification of common carp innate immune genes with whole-genome sequencing and RNA-Seq data.<br>Journal of Integrative Bioinformatics, 2011, 8, 169.                                                                              | 1.0 | 12        |
| 158 | Abstract 4295: High-throughput screening of osteosarcoma progression: A zebrafish model. , 2011, , .                                                                                                                                  |     | 0         |
| 159 | Macrophage-specific gene functions in Spi1-directed innate immunity. Blood, 2010, 116, e1-e11.                                                                                                                                        | 0.6 | 172       |
| 160 | Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos.<br>Molecular Immunology, 2010, 48, 179-190.                                                                                              | 1.0 | 55        |
| 161 | Swimming suppresses hepatic vitellogenesis in European female silver eels as shown by expression of the estrogen receptor 1, vitellogenin1 and vitellogenin2 in the liver. Reproductive Biology and Endocrinology, 2010, 8, 27.       | 1.4 | 16        |
| 162 | Integrating heterogeneous sequence information for transcriptome-wide microarray design; a<br>Zebrafish example. BMC Research Notes, 2010, 3, 192.                                                                                    | 0.6 | 7         |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | RNA isolation method for single embryo transcriptome analysis in zebrafish. BMC Research Notes, 2010, 3, 73.                                                                                                                          | 0.6  | 41        |
| 164 | Temporal expression of hepatic estrogen receptor 1, vitellogenin1 and vitellogenin2 in European silver eels. General and Comparative Endocrinology, 2010, 166, 1-11.                                                                  | 0.8  | 32        |
| 165 | Identification of hoxb1b downstream genes: hoxb1b as a regulatory factor controlling<br>transcriptional networks and cell movement during zebrafish gastrulation. International Journal of<br>Developmental Biology, 2010, 54, 55-62. | 0.3  | 14        |
| 166 | <i>In Vivo</i> Magnetic Resonance Imaging to Detect Malignant Melanoma in Adult Zebrafish.<br>Zebrafish, 2010, 7, 143-148.                                                                                                            | 0.5  | 20        |
| 167 | Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish<br>embryos. Soft Matter, 2010, 6, 3778.                                                                                           | 1.2  | 39        |
| 168 | Establishing Zebrafish as a Novel Exercise Model: Swimming Economy, Swimming-Enhanced Growth<br>and Muscle Growth Marker Gene Expression. PLoS ONE, 2010, 5, e14483.                                                                  | 1.1  | 143       |
| 169 | Zebrafish development and regeneration: new tools for biomedical research. International Journal of<br>Developmental Biology, 2009, 53, 835-850.                                                                                      | 0.3  | 143       |
| 170 | The zebrafish as a model system for glucocorticoid receptor research. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, 75-82.                                                           | 0.8  | 83        |
| 171 | In vivo metabolite profile of adult zebrafish brain obtained by highâ€resolution localized magnetic resonance spectroscopy. Journal of Magnetic Resonance Imaging, 2009, 29, 275-281.                                                 | 1.9  | 28        |
| 172 | Photothermal Correlation Spectroscopy of Gold Nanoparticles in Solution. Journal of Physical Chemistry C, 2009, 113, 11451-11457.                                                                                                     | 1.5  | 51        |
| 173 | Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Molecular Immunology, 2009, 46, 2317-2332.                               | 1.0  | 112       |
| 174 | Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Molecular<br>Immunology, 2009, 46, 2918-2930.                                                                                                     | 1.0  | 203       |
| 175 | Single-Molecule Microscopy Reveals Membrane Microdomain Organization of Cells in a Living<br>Vertebrate. Biophysical Journal, 2009, 97, 1206-1214.                                                                                    | 0.2  | 53        |
| 176 | Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine.<br>Genome Biology, 2009, 10, R81.                                                                                                  | 13.9 | 71        |
| 177 | Transcriptome Profiling and Functional Analyses of the Zebrafish Embryonic Innate Immune Response<br>to <i>Salmonella</i> Infection. Journal of Immunology, 2009, 182, 5641-5653.                                                     | 0.4  | 214       |
| 178 | Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. Journal of<br>Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 77-92.                                | 0.7  | 103       |
| 179 | Male silver eels mature by swimming. BMC Physiology, 2008, 8, 14.                                                                                                                                                                     | 3.6  | 22        |
| 180 | Photothermal Detection of Individual Gold Nanoparticles: Perspectives for Highâ€Throughput<br>Screening. ChemPhysChem, 2008, 9, 1761-1766.                                                                                            | 1.0  | 20        |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC<br>Genomics, 2008, 9, 196.                                                                                                                                   | 1.2 | 43        |
| 182 | Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation.<br>Developmental Biology, 2008, 319, 370-383.                                                                                                            | 0.9 | 61        |
| 183 | Candidates for membrane progestin receptors—Past approaches and future challenges. Comparative<br>Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 148, 381-389.                                                                 | 1.3 | 72        |
| 184 | Identification and real-time imaging of a myc-expressing neutrophil population involved in<br>inflammation and mycobacterial granuloma formation in zebrafish. Developmental and Comparative<br>Immunology, 2008, 32, 36-49.                             | 1.0 | 124       |
| 185 | A spatially restricted increase in receptor mobility is involved in directional sensing<br>during <i>Dictyostelium discoideum</i> chemotaxis. Journal of Cell Science, 2008, 121, 1750-1757.                                                             | 1.2 | 33        |
| 186 | Analysis of Interactions of Signaling Proteins with Phage-Displayed Ligands by Fluorescence<br>Correlation Spectroscopy. Journal of Biomolecular Screening, 2008, 13, 766-776.                                                                           | 2.6 | 3         |
| 187 | Discovery of a Functional Glucocorticoid Receptor β-Isoform in Zebrafish. Endocrinology, 2008, 149, 1591-1599.                                                                                                                                           | 1.4 | 144       |
| 188 | Single-Molecule Imaging of Cellular Signaling. Springer Series in Biophysics, 2008, , 107-129.                                                                                                                                                           | 0.4 | 2         |
| 189 | Characterization of Genomic Clones and Expression Analysis of the Three Types of Superoxide<br>Dismutases During Nodule Development in Lotus japonicus. Molecular Plant-Microbe Interactions,<br>2007, 20, 262-275.                                      | 1.4 | 46        |
| 190 | DNA computing of solutions to knapsack problems. BioSystems, 2007, 88, 156-162.                                                                                                                                                                          | 0.9 | 31        |
| 191 | Expression analysis of the family of 14-3-3 proteins in zebrafish development. Gene Expression Patterns, 2007, 7, 511-520.                                                                                                                               | 0.3 | 10        |
| 192 | Genetic and Transcriptome Characterization of Model Zebrafish Cell Lines. Zebrafish, 2006, 3, 441-453.                                                                                                                                                   | 0.5 | 33        |
| 193 | ZebraFISH: Fluorescent In Situ Hybridization Protocol and Three-Dimensional Imaging of Gene<br>Expression Patterns. Zebrafish, 2006, 3, 465-476.                                                                                                         | 0.5 | 52        |
| 194 | Magnetic Resonance Microscopy of the Adult Zebrafish. Zebrafish, 2006, 3, 431-439.                                                                                                                                                                       | 0.5 | 61        |
| 195 | Functions of the MAPK family in vertebrate-development. FEBS Letters, 2006, 580, 4984-4990.                                                                                                                                                              | 1.3 | 200       |
| 196 | Single-Molecule Diffusion Reveals Similar Mobility for the Lck, H-Ras, and K-Ras Membrane Anchors.<br>Biophysical Journal, 2006, 91, 1090-1097.                                                                                                          | 0.2 | 72        |
| 197 | Novel interaction of selenium-binding protein with glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase of Arabidopsis thaliana. Functional Plant Biology, 2006, 33, 847.                                                         | 1.1 | 12        |
| 198 | The Production of Species-Specific Highly Unsaturated Fatty Acyl-Containing LCOs from Rhizobium<br>leguminosarum bv. trifolii Is Stringently Regulated by nodD and Involves the nodRL Genes. Molecular<br>Plant-Microbe Interactions, 2006, 19, 215-226. | 1.4 | 9         |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiologia Plantarum,<br>2006, 127, 535-550.                                                                                                                          | 2.6 | 76        |
| 200 | Structural identification of the iipo-chitin oligosaccharide nodulation signals of Rhizobium loti.<br>Molecular Microbiology, 2006, 15, 627-638.                                                                                                     | 1.2 | 154       |
| 201 | Cloning, functional expression and characterization of Mesorhizobium loti arylamine<br>N-acetyltransferases: rhizobial symbiosis supplies leguminous plants with the xenobiotic<br>N-acetylation pathway. Molecular Microbiology, 2006, 60, 505-512. | 1.2 | 33        |
| 202 | Application of Mismatch Detection Methods in DNA Computing. Natural Computing, 2006, 5, 151-163.                                                                                                                                                     | 1.8 | 1         |
| 203 | Characterization and expression patterns of the MAPK family in zebrafish. Gene Expression Patterns, 2006, 6, 1019-1026.                                                                                                                              | 0.3 | 78        |
| 204 | MyD88 Innate Immune Function in a Zebrafish Embryo Infection Model. Infection and Immunity, 2006, 74, 2436-2441.                                                                                                                                     | 1.0 | 169       |
| 205 | Analysis of Promoter Activity of the Early Nodulin Enod40 in Lotus japonicus. Molecular<br>Plant-Microbe Interactions, 2005, 18, 414-427.                                                                                                            | 1.4 | 32        |
| 206 | Genomic annotation and transcriptome analysis of the zebrafish (Danio rerio) hox complex with description of a novel member, hoxb13a. Evolution & Development, 2005, 7, 362-375.                                                                     | 1.1 | 27        |
| 207 | Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos.<br>Planta, 2005, 220, 531-540.                                                                                                                 | 1.6 | 43        |
| 208 | Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta, 2005, 221, 459-470.                                                                                                    | 1.6 | 33        |
| 209 | Protein output for DNA computing. Natural Computing, 2005, 4, 1-10.                                                                                                                                                                                  | 1.8 | 16        |
| 210 | Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. Journal of Cell Science, 2005, 118, 1799-1809.                                                                 | 1.2 | 109       |
| 211 | Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult<br>zebrafish. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005,<br>289, R1512-R1519.                           | 0.9 | 186       |
| 212 | Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to<br>Mycobacterium marinum infection. Molecular Immunology, 2005, 42, 1185-1203.                                                                           | 1.0 | 129       |
| 213 | Genomic annotation and expression analysis of the zebrafish Rho small GTPase family during development and bacterial infection. Genomics, 2005, 86, 25-37.                                                                                           | 1.3 | 51        |
| 214 | Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 2005, 56, 1711-1726.                                                                                                     | 2.4 | 183       |
| 215 | Lotus-related species and their agronomic importance. , 2005, , 25-37.                                                                                                                                                                               |     | 34        |
| 216 | The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium. Functional<br>Plant Biology, 2005, 32, 881.                                                                                                                  | 1.1 | 45        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Mapping and map-based cloning. , 2005, , 217-232.                                                                                                                                                                      |     | 4         |
| 218 | Induction of hairy roots for symbiotic gene expression studies. , 2005, , 261-277.                                                                                                                                     |     | 36        |
| 219 | Concurrent visualization of gusA and lacZ reporter gene expression. , 2005, , 99-109.                                                                                                                                  |     | 4         |
| 220 | Application of Mismatch Detection Methods in DNA Computing. Lecture Notes in Computer Science, 2005, , 159-168.                                                                                                        | 1.0 | 0         |
| 221 | DNA computing using single-molecule hybridization detection. Nucleic Acids Research, 2004, 32, 4962-4968.                                                                                                              | 6.5 | 26        |
| 222 | Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development (Cambridge), 2004, 131, 525-537.                                                              | 1.2 | 127       |
| 223 | Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins<br>from rice. Plant Molecular Biology, 2004, 55, 781-796.                                                           | 2.0 | 26        |
| 224 | Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular<br>distributions of 14-3-3σ and 14-3-3ζ. Journal of Cell Science, 2004, 117, 1411-1420.                                   | 1.2 | 59        |
| 225 | In vivo plasma membrane organization: results of biophysical approaches. Biochimica Et Biophysica<br>Acta - Biomembranes, 2004, 1664, 119-131.                                                                         | 1.4 | 85        |
| 226 | Specific recognition of bacteria by plant LysM domain receptor kinases. Trends in Microbiology, 2004, 12, 201-204.                                                                                                     | 3.5 | 30        |
| 227 | Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Molecular<br>Immunology, 2004, 40, 773-783.                                                                                | 1.0 | 477       |
| 228 | Single-Molecule Imaging of the H-Ras Membrane-Anchor Reveals Domains in the Cytoplasmic Leaflet of the Cell Membrane. Biophysical Journal, 2004, 86, 609-616.                                                          | 0.2 | 140       |
| 229 | Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice. Plant Molecular Biology, 2004, 55, 781-96.                                                               | 2.0 | 12        |
| 230 | Auxin distribution inLotus japonicusduring root nodule development. Plant Molecular Biology, 2003,<br>52, 1169-1180.                                                                                                   | 2.0 | 130       |
| 231 | A Catalogue of Molecular, Physiological and Symbiotic Properties of Soybean-Nodulating Rhizobial<br>Strains from Different Soybean Cropping Areas of China. Systematic and Applied Microbiology, 2003,<br>26, 453-465. | 1.2 | 21        |
| 232 | DNA computing by blocking. Theoretical Computer Science, 2003, 292, 653-665.                                                                                                                                           | 0.5 | 33        |
| 233 | 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. Journal of Experimental Botany, 2003, 54, 1033-1043.                                                                                     | 2.4 | 37        |
| 234 | Infection-Blocking Genes of a Symbiotic Rhizobium leguminosarum Strain That Are Involved in<br>Temperature-Dependent Protein Secretion. Molecular Plant-Microbe Interactions, 2003, 16, 53-64.                         | 1.4 | 220       |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Structural motifs in the RNA encoded by the early nodulation gene enod40 of soybean. Nucleic Acids Research, 2003, 31, 5003-5015.                                                                                               | 6.5  | 39        |
| 236 | Specific activation of ERK pathways by chitin oligosaccharides in embryonic zebrafish cell lines.<br>Glycobiology, 2003, 13, 725-732.                                                                                           | 1.3  | 23        |
| 237 | <title>Data submission of 3D image sets to a bio-molecular database using active shape models and a 3D reference model for projection</title> . , 2003, 5304, 13.                                                               |      | 3         |
| 238 | Alfalfa nodulation by Sinorhizobium fredii does not require sulfated Nod-factors. Functional Plant<br>Biology, 2003, 30, 1219.                                                                                                  | 1.1  | 7         |
| 239 | Genetic Analysis of a pH-Regulated Operon from Rhizobium tropici CIAT899 Involved in Acid Tolerance and Nodulation Competitiveness. Molecular Plant-Microbe Interactions, 2003, 16, 159-168.                                    | 1.4  | 96        |
| 240 | Lotus japonicus Gene Ljsbp Is Highly Conserved Among Plants and Animals and Encodes a Homologue<br>to the Mammalian Selenium-Binding Proteins. Molecular Plant-Microbe Interactions, 2002, 15, 313-322.                         | 1.4  | 38        |
| 241 | A receptor in symbiotic dialogue. Nature, 2002, 417, 910-911.                                                                                                                                                                   | 13.7 | 24        |
| 242 | Synthesis and biological evaluation of oligosaccharides related to the molecule signals in plant defence and the Rhizobium-legume symbiosis. Tetrahedron, 2002, 58, 521-530.                                                    | 1.0  | 5         |
| 243 | Novel lipochitin oligosaccharide structures produced by Rhizobium etli KIM5s. Carbohydrate<br>Research, 2002, 337, 1193-1202.                                                                                                   | 1.1  | 15        |
| 244 | Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations.<br>Journal of Biotechnology, 2001, 91, 243-255.                                                                                | 1.9  | 58        |
| 245 | Single-Molecule Imaging of L-Type Ca2+ Channels in Live Cells. Biophysical Journal, 2001, 81, 2639-2646.                                                                                                                        | 0.2  | 179       |
| 246 | Cell Biological Changes of Outer Cortical Root Cells in Early Determinate Nodulation. Molecular<br>Plant-Microbe Interactions, 2001, 14, 839-847.                                                                               | 1.4  | 64        |
| 247 | Mutants in the nodFEL promoter of Rhizobium leguminosarum bv. viciae reveal a role of individual nucleotides in transcriptional activation and protein binding. Archives of Microbiology, 2001, 175, 152-160.                   | 1.0  | 7         |
| 248 | Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Current Opinion in Structural Biology, 2001, 11, 608-616.                                                   | 2.6  | 47        |
| 249 | Rhizobial NodL O -Acetyl Transferase and NodS N -Methyl Transferase Functionally Interfere in<br>Production of Modified Nod Factors. Journal of Bacteriology, 2001, 183, 3408-3416.                                             | 1.0  | 15        |
| 250 | A Lotus japonicus Nodulation System Based on Heterologous Expression of the Fucosyl Transferase<br>NodZ and the Acetyl Transferase NolL in Rhizobium leguminosarum. Molecular Plant-Microbe<br>Interactions, 2000, 13, 475-479. | 1.4  | 53        |
| 251 | Lotus japonicus Contains Two Distinct ENOD40 Genes That Are Expressed in Symbiotic, Nonsymbiotic, and Embryonic Tissues. Molecular Plant-Microbe Interactions, 2000, 13, 987-994.                                               | 1.4  | 53        |
| 252 | Growth Temperature Regulation of Host-Specific Modifications of Rhizobial Lipo-Chitin<br>Oligosaccharides: The Function of nodX Is Temperature Regulated. Molecular Plant-Microbe<br>Interactions, 2000, 13, 808-820.           | 1.4  | 16        |

| #   | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Use of Green Fluorescent Protein Color Variants Expressed on Stable Broad-Host-Range Vectors to<br>Visualize Rhizobia Interacting with Plants. Molecular Plant-Microbe Interactions, 2000, 13, 1163-1169.                                                                    | 1.4  | 140       |
| 254 | Nod Factors of Rhizobium leguminosarum bv. viciae and Their Fucosylated Derivatives Stimulate a Nod<br>Factor Cleaving Activity in Pea Roots and Are Hydrolyzed In Vitro by Plant Chitinases at Different<br>Rates. Molecular Plant-Microbe Interactions, 2000, 13, 799-807. | 1.4  | 47        |
| 255 | Computing with DNA by operating on plasmids. BioSystems, 2000, 57, 87-93.                                                                                                                                                                                                    | 0.9  | 147       |
| 256 | Heterologous Rhizobial Lipochitin Oligosaccharides and Chitin Oligomers Induce Cortical Cell<br>Divisions in Red Clover Roots, Transformed with the Pea Lectin Gene. Molecular Plant-Microbe<br>Interactions, 2000, 13, 268-276.                                             | 1.4  | 55        |
| 257 | Root Nodulation and Infection Factors Produced by Rhizobial Bacteria. Annual Review of Microbiology, 2000, 54, 257-288.                                                                                                                                                      | 2.9  | 431       |
| 258 | Use of GFP to Study Factors Involved in the Lotus japonicus Symbiosis. , 2000, , 219-222.                                                                                                                                                                                    |      | 1         |
| 259 | Mutation in GDP-Fucose Synthesis Genes of Sinorhizobium fredii Alters Nod Factors and Significantly<br>Decreases Competitiveness to Nodulate Soybeans. Molecular Plant-Microbe Interactions, 1999, 12,<br>207-217.                                                           | 1.4  | 64        |
| 260 | Knocking out nodules. Nature, 1999, 402, 135-136.                                                                                                                                                                                                                            | 13.7 | 7         |
| 261 | Structural characterisation of lipo-chitin oligosaccharides isolated from Bradyrhizobium aspalati,<br>microsymbionts of commercially important South African legumes. Carbohydrate Research, 1999, 317,<br>155-163.                                                          | 1.1  | 29        |
| 262 | Chemical synthesis of N-acetylglucosamine derivatives and their use as glycosyl acceptors by the<br>Mesorhizobium loti chitin oligosaccharide synthase NodC. Carbohydrate Research, 1999, 321, 176-189.                                                                      | 1.1  | 18        |
| 263 | Biosynthesis of Lipo-chitin Oligosaccharides: Bacterial Signal Molecules Which Induce Plant<br>Organogenesis. , 1999, , 325-344.                                                                                                                                             |      | 1         |
| 264 | Chitin Oligosaccharide Synthesis by Rhizobia and Zebrafish Embryos Starts by Glycosyl Transfer to O4<br>of the Reducing-Terminal Residueâ€. Biochemistry, 1999, 38, 4045-4052.                                                                                               | 1.2  | 60        |
| 265 | Comparison of Characteristics of the nodX Genes from Various Rhizobium leguminosarum Strains.<br>Molecular Plant-Microbe Interactions, 1999, 12, 252-258.                                                                                                                    | 1.4  | 33        |
| 266 | Lipochitin Oligosaccharides from Rhizobium leguminosarum bv. viciae Reduce Auxin Transport<br>Capacity in Vicia sativa subsp. nigra Roots. Molecular Plant-Microbe Interactions, 1999, 12, 839-844.                                                                          | 1.4  | 114       |
| 267 | Function of chitin oligosaccharides in plant and animal development. , 1999, 87, 71-83.                                                                                                                                                                                      |      | 15        |
| 268 | Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology, 1998, 37, 715-727.                                                                                                        | 2.0  | 33        |
| 269 | Title is missing!. Plant Molecular Biology, 1998, 38, 917-917.                                                                                                                                                                                                               | 2.0  | 0         |
| 270 | Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology, 1998, 38, 861-873.                                                                                                        | 2.0  | 31        |

| #   | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Genes and signal molecules involved in the rhizobiaLeguminoseae symbiosis. Current Opinion in Plant<br>Biology, 1998, 1, 353-359.                                                                                                                                                   | 3.5 | 106       |
| 272 | Expression of Rhizobium Chitin Oligosaccharide Fucosyltransferase in Zebrafish Embryos Disrupts<br>Normal Developmenta,. Annals of the New York Academy of Sciences, 1998, 842, 49-54.                                                                                              | 1.8 | 6         |
| 273 | Functional analysis of an interspecies chimera of acyl carrier proteins indicates a specialized domain for protein recognition. Molecular Genetics and Genomics, 1998, 257, 641-648.                                                                                                | 2.4 | 30        |
| 274 | Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant Journal, 1998, 14, 23-34.                                                                                          | 2.8 | 455       |
| 275 | A Two-Component System Plays an Important Role in the Root-Colonizing Ability of Pseudomonas fluorescens Strain WCS365. Molecular Plant-Microbe Interactions, 1998, 11, 45-56.                                                                                                      | 1.4 | 115       |
| 276 | Novel Branched Nod Factor Structure Results from α-(1→3) Fucosyl Transferase Activity: The Major<br>Lipo-Chitin Oligosaccharides fromMesorhizobiumlotiStrain NZP2213 Bear an α-(1→3) Fucosyl Substituent<br>on a Nonterminal Backbone Residueâ€. Biochemistry, 1998, 37, 9024-9032. | 1.2 | 57        |
| 277 | Biosynthesis and Secretion of Rhizobial Lipochitin-Oligosaccharide Signal Molecules. Sub-Cellular<br>Biochemistry, 1998, 29, 29-71.                                                                                                                                                 | 1.0 | 23        |
| 278 | Flavonoids Synthesized in Cortical Cells During Nodule Initiation Are Early Developmental Markers in<br>White Clover. Molecular Plant-Microbe Interactions, 1998, 11, 1223-1232.                                                                                                    | 1.4 | 90        |
| 279 | NodFE-Dependent Fatty Acids That Lack an α-β Unsaturation Are Subject to Differential Transfer, Leading<br>to Novel Phospholipids. Molecular Plant-Microbe Interactions, 1998, 11, 33-44.                                                                                           | 1.4 | 17        |
| 280 | Restriction of Host Range by the sym2 Allele of Afghan Pea Is Nonspecific for the Type of Modification<br>at the Reducing Terminus of Nodulation Signals. Molecular Plant-Microbe Interactions, 1998, 11,<br>418-422.                                                               | 1.4 | 27        |
| 281 | Flavonoids as Regulators of Plant Development. , 1998, , 167-177.                                                                                                                                                                                                                   |     | 4         |
| 282 | Diversity of Root Nodulation and Rhizobial Infection Processes. , 1998, , 347-360.                                                                                                                                                                                                  |     | 28        |
| 283 | A Rhizobium leguminosarum Biovar trifolii Locus Not Localized on the Sym Plasmid Hinders Effective<br>Nodulation on Plants of the Pea Cross-Inoculation Group. Molecular Plant-Microbe Interactions,<br>1997, 10, 938-941.                                                          | 1.4 | 40        |
| 284 | Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also<br>recognize related substrates of animal origin. Proceedings of the National Academy of Sciences of the<br>United States of America, 1997, 94, 4336-4341.                          | 3.3 | 61        |
| 285 | Ethylene as a regulator of Rhizobium infection. Trends in Plant Science, 1997, 2, 203-204.                                                                                                                                                                                          | 4.3 | 35        |
| 286 | An important developmental role for oligosaccharides during early embryogenesis of cyprinid fish.<br>Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7982-7986.                                                                          | 3.3 | 77        |
| 287 | Structural determination of the lipo-chitin oligosaccharide nodulation signals produced by Rhizobium fredii HH103. Carbohydrate Research, 1997, 303, 435-443.                                                                                                                       | 1.1 | 36        |
| 288 | Biosynthesis and Host Specificity of Rhizobial Lipo-Chitin Oligosaccharide Signal Molecules. , 1997, ,                                                                                                                                                                              |     | 1         |

288 1-26.

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Induction of root cortical cell divisions by heterologous nodulation factors. , 1997, , 47-50.                                                                                                                        |     | 0         |
| 290 | Regulation of plant morphogenesis by Lipoâ€Chitin oligosaccharides. Critical Reviews in Plant Sciences, 1996, 15, 559-582.                                                                                            | 2.7 | 56        |
| 291 | NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals. Molecular Microbiology, 1996, 21, 397-408.                                                   | 1.2 | 71        |
| 292 | Rhizobium leguminosarum bv. trifolii produces Lipo-chitin Oligosaccharides with nodE-dependent<br>Highly Unsaturated Fatty Acyl Moieties. Journal of Biological Chemistry, 1996, 271, 22563-22569.                    | 1.6 | 29        |
| 293 | Rhizobium. Molecular Genetics and Genomics, 1996, 251, 44.                                                                                                                                                            | 2.4 | 4         |
| 294 | Regulation of Plant Morphogenesis by Lipo-Chitin Oligosaccharides. Critical Reviews in Plant<br>Sciences, 1996, 15, 559-582.                                                                                          | 2.7 | 95        |
| 295 | Characterization of <i>Rhizobium tropici</i> ClAT899 Nodulation Factors: The Role<br>of <i>nodH</i> and <i>nodPQ</i> Genes in Their Sulfation. Molecular Plant-Microbe Interactions, 1996,<br>9, 151.                 | 1.4 | 70        |
| 296 | Structural Determination and Biosynthetic Studies of the Rhizobial Nod Metabolites: The Lipo-Chitin<br>Oligosaccharides. , 1996, , 385-401.                                                                           |     | 0         |
| 297 | Substrate Specificity and Kinetic Studies of Nodulation Protein NodL of Rhizobium leguminosarum.<br>Biochemistry, 1995, 34, 12712-12720.                                                                              | 1.2 | 29        |
| 298 | Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Molecular Biology, 1995, 29, 453-464.                                         | 2.0 | 123       |
| 299 | Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2. Plant Molecular Biology, 1995, 29, 465-477.                      | 2.0 | 61        |
| 300 | Uridine, a cell division factor in pea roots. Plant Molecular Biology, 1995, 29, 869-873.                                                                                                                             | 2.0 | 61        |
| 301 | A central domain of Rhizobium NodE protein mediates host specificity by determining the<br>hydrophobicity of fatty acyl moieties of nodulation factors. Molecular Microbiology, 1995, 16,<br>1123-1136.               | 1.2 | 52        |
| 302 | Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. Journal of Bacteriology, 1995, 177, 6276-6281.                                                            | 1.0 | 91        |
| 303 | The Molecular Basis of Infection and Nodulation by Rhizobia: The Ins and Outs of Sympathogenesis.<br>Annual Review of Phytopathology, 1995, 33, 345-368.                                                              | 3.5 | 166       |
| 304 | Host Specificity of <i>Rhizobium leguminosarum</i> is Determined by the Hydrophobicity of Highly<br>Unsaturated Fatty Acyl Moieties of the Nodulation Factors. Molecular Plant-Microbe Interactions,<br>1995, 8, 155. | 1.4 | 64        |
| 305 | Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa. Plant Physiology, 1994, 105, 787-797.                                                                                            | 2.3 | 237       |
| 306 | Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants. Plant and<br>Soil, 1994, 161, 81-89.                                                                                            | 1.8 | 6         |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis. Plant<br>Molecular Biology, 1994, 26, 1413-1422.                                                                              | 2.0  | 52        |
| 308 | The molecular basis of the host specificity of the Rhizobium bacteria. Antonie Van Leeuwenhoek, 1994,<br>65, 81-98.                                                                                                        | 0.7  | 27        |
| 309 | Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin<br>fragments and N-acetylglucosamine in vitro. Molecular Microbiology, 1994, 11, 793-804.                                    | 1.2  | 96        |
| 310 | Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum. Molecular Microbiology, 1994, 13, 821-831.                                                                     | 1.2  | 98        |
| 311 | Role of rhizobial lipo-oligosacharides in root nodule formation on leguminous plants. , 1994, , 81-89.                                                                                                                     |      | 0         |
| 312 | Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis. , 1994, ,<br>177-186.                                                                                                         |      | 0         |
| 313 | Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root<br>hairs. Plant Journal, 1993, 4, 727-733.                                                                           | 2.8  | 153       |
| 314 | Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Plant Cell, 1993, 5, 615.                                                                                                                            | 3.1  | 58        |
| 315 | The Function of the Rhizobial NodABC and NodFEL Operons in the Biosynthesis of<br>Lipo-Oligosaccharides. Current Plant Science and Biotechnology in Agriculture, 1993, , 165-170.                                          | 0.0  | 13        |
| 316 | Rhizobium Nod Metabolites and Early Nodulin Gene Expression. Current Plant Science and<br>Biotechnology in Agriculture, 1993, , 365-368.                                                                                   | 0.0  | 0         |
| 317 | A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium<br>japonicum Proceedings of the National Academy of Sciences of the United States of America, 1992, 89,<br>8789-8793. | 3.3  | 201       |
| 318 | Induction of Pre-Infection Thread Structures in the Leguminous Host Plant by Mitogenic<br>Lipo-Oligosaccharides of Rhizobium. Science, 1992, 257, 70-72.                                                                   | 6.0  | 337       |
| 319 | Rhizobial lipo-oligosaccharides: answers and questions. Plant Molecular Biology, 1992, 20, 977-986.                                                                                                                        | 2.0  | 137       |
| 320 | Detection and Separation of <i>Rhizobium</i> and <i>Bradyrhizobium</i> Nod Metabolites Using<br>Thin-Layer Chromatography. Molecular Plant-Microbe Interactions, 1992, 5, 72.                                              | 1.4  | 127       |
| 321 | Isolation of the Rhizobium leguminosarum NodF nodulation protein: NodF carries a<br>4'-phosphopantetheine prosthetic group. Journal of Bacteriology, 1991, 173, 2872-2878.                                                 | 1.0  | 95        |
| 322 | A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host<br>specificity of Rhizobium. Nature, 1991, 354, 125-130.                                                                      | 13.7 | 576       |
| 323 | A biovar-specific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation<br>gene-inducing activity in root exudate of Vicia sativa subsp. nigra. Journal of Bacteriology, 1990, 172,<br>5394-5401.      | 1.0  | 107       |
| 324 | The ENOD12 gene product is involved in the infection process during the pea-rhizobium interaction.<br>Cell, 1990, 60, 281-294.                                                                                             | 13.5 | 293       |

| #   | Article                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Regulatory steps in nodulation by Rhizobium leguminosarum bv viciae. , 1990, , 215-218.                                                                                      |      | 1         |
| 326 | Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. Journal of<br>Bacteriology, 1989, 171, 4045-4053.                                   | 1.0  | 107       |
| 327 | Subcellular localization of the nodD gene product in Rhizobium leguminosarum. Journal of<br>Bacteriology, 1989, 171, 4686-4693.                                              | 1.0  | 75        |
| 328 | Additional nodulation genes on the Sym plasmid of Rhizobium leguminosarum biovar viciae. Plant<br>Molecular Biology, 1989, 13, 163-174.                                      | 2.0  | 47        |
| 329 | Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant<br>Molecular Biology, 1989, 12, 59-73.                                       | 2.0  | 80        |
| 330 | nodO, a new nod gene of the Rhizobium leguminosarum biovar viciae sym plasmid pRL1JI, encodes a<br>secreted protein. Journal of Bacteriology, 1989, 171, 6764-6770.          | 1.0  | 76        |
| 331 | The Rhizobium Node Protein as a Major Determinant of Host Specificity. NATO ASI Series Series H, Cell<br>Biology, 1989, , 359-366.                                           | 0.5  | 1         |
| 332 | Regulation of Nod Gene Expression: The Role of Nod D Protein. NATO ASI Series Series H, Cell Biology, 1989, , 137-144.                                                       | 0.5  | 0         |
| 333 | Flavonoid Compounds as Molecular Signals in Rhizobium — Legume Symbiosis. , 1988, , 189-205.                                                                                 |      | 5         |
| 334 | Induction of the nodA promoter of Rhizobium leguminosarum Sym plasmid pRL1JI by plant flavanones and flavones. Journal of Bacteriology, 1987, 169, 198-204.                  | 1.0  | 167       |
| 335 | Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant<br>Molecular Biology, 1987, 9, 27-39.                                            | 2.0  | 631       |
| 336 | Rhizobium nodulation gene nodD as a determinant of host specificity. Nature, 1987, 328, 337-340.                                                                             | 13.7 | 247       |
| 337 | Structure of theuvrBgene ofEscherichia coli. Homology with other DNA repair enzymes and characterization of the uvrB5 mutation. Nucleic Acids Research, 1986, 14, 2877-2890. | 6.5  | 73        |
| 338 | Induction of Rhizobium Nod Genes by Flavonoids: Differential Adaptation of Promoter, nodD Gene and<br>Inducers for Various Cross-Inoculation Groups. , 1986, , 123-135.      |      | 24        |
| 339 | Promoters and Operon Structure of the Nodulation Region of the Rhizobium Leguminosarum<br>Symbiosis Plasmid pRL1JI. , 1986, , 55-68.                                         |      | 10        |
| 340 | Plant-inducible virulence promoter of the Agrobacterium tumefaciens Ti plasmid. Nature, 1984, 312, 564-566.                                                                  | 13.7 | 68        |