List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/915806/publications.pdf Version: 2024-02-01

KEVIN LELVNN

#	Article	IF	CITATIONS
1	Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research, 2010, 32, 119-137.	0.8	909
2	Placing microalgae on the biofuels priority list: a review of the technological challenges. Journal of the Royal Society Interface, 2010, 7, 703-726.	1.5	680
3	Phytoplankton blooms: a â€`loophole' in microzooplankton grazing impact?. Journal of Plankton Research, 2005, 27, 313-321.	0.8	371
4	Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. Journal of Plankton Research, 2013, 35, 3-11.	0.8	344
5	The role of mixotrophic protists in the biological carbon pump. Biogeosciences, 2014, 11, 995-1005.	1.3	314
6	Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. Protist, 2016, 167, 106-120.	0.6	290
7	Future HAB science: Directions and challenges in a changing climate. Harmful Algae, 2020, 91, 101632.	2.2	223
8	Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist, 2006, 169, 525-536.	3.5	214
9	Endâ€Toâ€End Models for the Analysis of Marine Ecosystems: Challenges, Issues, and Next Steps. Marine and Coastal Fisheries, 2010, 2, 115-130.	0.6	202
10	Nutritional Status and Diet Composition Affect the Value of Diatoms as Copepod Prey. Science, 2005, 307, 1457-1459.	6.0	172
11	Modeling of HABs and eutrophication: Status, advances, challenges. Journal of Marine Systems, 2010, 83, 262-275.	0.9	171
12	Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change, 2012, 2, 510-513.	8.1	158
13	Predator–prey interactions: is â€~ecological stoichiometry' sufficient when good food goes bad?. Journal of Plankton Research, 2005, 27, 393-399.	0.8	154
14	Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Progress in Oceanography, 2014, 129, 176-199.	1.5	146
15	Promotion of harmful algal blooms by zooplankton predatory activity. Biology Letters, 2006, 2, 194-197.	1.0	145
16	Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresource Technology, 2013, 148, 215-220.	4.8	139
17	Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytologist, 2009, 181, 295-309.	3.5	138
18	Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 389-421.	0.9	134

#	Article	IF	CITATIONS
19	Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers. Journal of Plankton Research, 2005, 27, 1205-1210.	0.8	126
20	Have we been underestimating the effects of ocean acidification in zooplankton?. Global Change Biology, 2014, 20, 3377-3385.	4.2	125
21	Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1625-1645.	1.8	124
22	Building the "perfect beast": modelling mixotrophic plankton. Journal of Plankton Research, 2009, 31, 965-992.	0.8	121
23	Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?. Journal of Plankton Research, 2019, 41, 375-391.	0.8	119
24	Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism. Progress in Oceanography, 2003, 56, 249-279.	1.5	118
25	Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin's insectivorous plants. Journal of Experimental Botany, 2009, 60, 3975-3987.	2.4	108
26	IS THE GROWTH RATE HYPOTHESIS APPLICABLE TO MICROALGAE?1. Journal of Phycology, 2010, 46, 1-12.	1.0	105
27	Algal carbon–nitrogen metabolism: a biochemical basis for modelling the interactions between nitrate and ammonium uptake. Journal of Plankton Research, 1991, 13, 373-387.	0.8	97
28	A mechanistic model of photoinhibition. New Phytologist, 2000, 145, 347-359.	3.5	97
29	The large capacity for dark nitrateâ€assimilation in diatoms may overcome nitrate limitation of growth. New Phytologist, 2002, 155, 101-108.	3.5	86
30	Ecological modelling in a sea of variable stoichiometry: Dysfunctionality and the legacy of Redfield and Monod. Progress in Oceanography, 2010, 84, 52-65.	1.5	84
31	Importance of Interactions between Food Quality, Quantity, and Gut Transit Time on Consumer Feeding, Growth, and Trophic Dynamics. American Naturalist, 2007, 169, 632-646.	1.0	79
32	Influence of the N:P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp Bioresource Technology, 2014, 169, 588-595.	4.8	77
33	Acquired phototrophy in Mesodinium and Dinophysis – A review of cellular organization, prey selectivity, nutrient uptake and bioenergetics. Harmful Algae, 2013, 28, 126-139.	2.2	75
34	HOW CRITICAL IS THE CRITICAL N:P RATIO?1. Journal of Phycology, 2002, 38, 961-970.	1.0	71
35	Modelling mixotrophy in harmful algal blooms: More or less the sum of the parts?. Journal of Marine Systems, 2010, 83, 158-169.	0.9	70
36	Prey selection and rejection by a microflagellate; implications for the study and operation of microbial food webs. Journal of Experimental Marine Biology and Ecology, 1996, 196, 357-372.	0.7	67

#	Article	IF	CITATIONS
37	Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted?. Ecological Modelling, 2000, 125, 145-157.	1.2	67
38	Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170664.	1.2	63
39	Modelling Si-N-limited growth of diatoms. Journal of Plankton Research, 2000, 22, 447-472.	0.8	62
40	INTERACTIONS BETWEEN IRON, LIGHT, AMMONIUM, AND NITRATE: INSIGHTS FROM THE CONSTRUCTION OF A DYNAMIC MODEL OF ALGAL PHYSIOLOGY. Journal of Phycology, 1999, 35, 1171-1190.	1.0	61
41	Development of a robust marine ecosystem model to predict the role of iron in biogeochemical cycles: A comparison of results for iron-replete and iron-limited areas, and the SOIREE iron-enrichment experiment. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 333-366.	0.6	61
42	Accounting for grazing dynamics in nitrogenâ€phytoplanktonâ€zooplankton (NPZ) models. Limnology and Oceanography, 2007, 52, 649-661.	1.6	61
43	Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142604.	1.2	61
44	The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. Journal of Plankton Research, 2008, 30, 423-438.	0.8	60
45	Changes in toxins, intracellular and dissolved free amino acids of the toxic dinoflagellate Gymnodinium catenatum in response to changes in inorganic nutrients and salinity. Journal of Plankton Research, 1996, 18, 2093-2111.	0.8	59
46	MODELING THE RELEASE OF DISSOLVED ORGANIC MATTER BY PHYTOPLANKTON ¹ . Journal of Phycology, 2008, 44, 1171-1187.	1.0	56
47	Estimating the ecological, economic and social impacts of ocean acidification and warming on <scp>UK</scp> fisheries. Fish and Fisheries, 2017, 18, 389-411.	2.7	53
48	Accounting for variation in prey selectivity by zooplankton. Ecological Modelling, 2006, 199, 82-92.	1.2	51
49	The ratio of glutamine:glutamate in microalgae: a biomarker for N-status suitable for use at natural cell densities. Journal of Plankton Research, 1989, 11, 165-170.	0.8	50
50	Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency. PLoS ONE, 2016, 11, e0151739.	1.1	49
51	Sampling bias misrepresents the biogeographical significance of constitutive mixotrophs across global oceans. Global Ecology and Biogeography, 2019, 28, 418-428.	2.7	49
52	Modelling mixotrophic functional diversity and implications for ecosystem function. Journal of Plankton Research, 2018, 40, 627-642.	0.8	47
53	Release of nitrite by marine dinoflagellates: development of a mathematical simulation. Marine Biology, 1998, 130, 455-470.	0.7	46
54	A comparison of two N-irradiance interaction models of phytoplankton growth. Limnology and Oceanography, 2001, 46, 1794-1802.	1.6	44

#	Article	IF	CITATIONS
55	GROWTH OF HETEROSIGMA CARTERAE (RAPHIDOPHYCEAE) ON NITRATE AND AMMONIUM AT THREE PHOTON FLUX DENSITIES: EVIDENCE FOR N STRESS IN NITRATE-GROWING CELLS1. Journal of Phycology, 1995, 31, 859-867.	1.0	42
56	Attack is not the best form of defense: Lessons from harmful algal bloom dynamics. Harmful Algae, 2008, 8, 129-139.	2.2	42
57	Do external resource ratios matter?. Journal of Marine Systems, 2010, 83, 170-180.	0.9	40
58	Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on prey of, variable nitrogen:phosphorus stoichiometry. Harmful Algae, 2016, 55, 1-12.	2.2	40
59	European sea bass, <i>Dicentrarchus labrax</i> , in a changing ocean. Biogeosciences, 2014, 11, 2519-2530.	1.3	39
60	Composition of intracellular and extracellular pools of amino acids, and amino acid utilization of microalgae of different sizes. Journal of Experimental Marine Biology and Ecology, 1990, 139, 151-166.	0.7	38
61	Changes in fatty acids, amino acids and carbon/nitrogen biomass during nitrogen starvation of ammonium- and nitrate-grownlsochrysis galbana. Journal of Applied Phycology, 1992, 4, 95-104.	1.5	38
62	Predator-prey interactions between Isochrysis galbana and Oxyrrhis marina. II. Release of non-protein amines and faeces during predation of Isochrysis. Journal of Plankton Research, 1993, 15, 893-905.	0.8	38
63	Selection for fitness at the individual or population levels: Modelling effects of genetic modifications in microalgae on productivity and environmental safety. Journal of Theoretical Biology, 2010, 263, 269-280.	0.8	38
64	Simulating Effects of Variable Stoichiometry and Temperature on Mixotrophy in the Harmful Dinoflagellate Karlodinium veneficum. Frontiers in Marine Science, 2018, 5, .	1.2	38
65	Amino acid uptake by the toxic dinoflagellate Alexandrium fundyense. Marine Biology, 1999, 133, 11-19.	0.7	37
66	Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production. Interface Focus, 2013, 3, 20120037.	1.5	37
67	Aldehyde-induced insidious effects cannot be considered as a diatom defence mechanism against copepods. Marine Ecology - Progress Series, 2009, 377, 79-89.	0.9	37
68	What is the limit for photoautotrophic plankton growth rates?. Journal of Plankton Research, 2017, 39, 13-22.	0.8	35
69	Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics. PLoS Computational Biology, 2018, 14, e1006118.	1.5	35
70	Do we need complex mechanistic photoacclimation models for phytoplankton?. Limnology and Oceanography, 2003, 48, 2243-2249.	1.6	34
71	Physiology limits commercially viable photoautotrophic production of microalgal biofuels. Journal of Applied Phycology, 2017, 29, 2713-2727.	1.5	34
72	Nutrients from anaerobic digestion effluents for cultivation of the microalga Nannochloropsis sp. — Impact on growth, biochemical composition and the potential for cost and environmental impact savings. Algal Research, 2017, 26, 275-286.	2.4	34

#	Article	IF	CITATIONS
73	A Bibliometric Analysis of Microalgae Research in the World, Europe, and the European Atlantic Area. Marine Drugs, 2020, 18, 79.	2.2	34
74	Mixotrophy in Harmful Algal Blooms: By Whom, on Whom, When, Why, and What Next. Ecological Studies, 2018, , 113-132.	0.4	33
75	The loss of organic nitrogen during marine primary production may be significantly overestimated when using 15N substrates. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 641-647.	1.2	32
76	Acclimation, adaptation, traits and trade-offs in plankton functional type models: reconciling terminology for biology and modelling. Journal of Plankton Research, 2015, 37, 683-691.	0.8	32
77	Why Plankton Modelers Should Reconsider Using Rectangular Hyperbolic (Michaelis-Menten, Monod) Descriptions of Predator-Prey Interactions. Frontiers in Marine Science, 2016, 3, .	1.2	32
78	Minimising losses to predation during microalgae cultivation. Journal of Applied Phycology, 2017, 29, 1829-1840.	1.5	32
79	Modelling marine phytoplankton growth under eutrophic conditions. Journal of Sea Research, 2005, 54, 92-103.	0.6	31
80	Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells. Nature Communications, 2018, 9, 74.	5.8	31
81	Changes in intracellular and extracellular ?-amino acids in Gloeothece during N2-fixation and following addition of ammonium. Archives of Microbiology, 1990, 153, 574-579.	1.0	30
82	Parental exposure to elevated pCO2 influences the reproductive success of copepods. Journal of Plankton Research, 2014, 36, 1165-1174.	0.8	30
83	Carbon-nitrogen relations during batch growth ofNannochloropsis oculata (Eustigmatophyceae) under alternating light and dark. Journal of Applied Phycology, 1993, 5, 465-475.	1.5	29
84	Modelling suggests that optimization of dark nitrogenâ€assimilation need not be a critical selective feature in phytoplankton. New Phytologist, 2002, 155, 109-119.	3.5	29
85	Reply to Horizons Article â€~Plankton functional type modelling: running before we can walk' Anderson (2005): II. Putting trophic functionality into plankton functional types. Journal of Plankton Research, 2006, 28, 873-875.	0.8	27
86	Differences in physiology explain succession of mixoplankton functional types and affect carbon fluxes in temperate seas. Progress in Oceanography, 2021, 190, 102481.	1.5	27
87	Toxin production in migrating dinoflagellates: a modelling study of PSP producing Alexandrium. Harmful Algae, 2002, 1, 147-155.	2.2	26
88	Modelling alkaline phosphatase activity in microalgae under orthophosphate limitation: the case of <i>Phaeocystis globosa</i> . Journal of Plankton Research, 2015, 37, 869-885.	0.8	26
89	Modeling Plankton Mixotrophy: A Mechanistic Model Consistent with the Shuter-Type Biochemical Approach. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	25
90	A short version of the ammonium-nitrate interaction model. Journal of Plankton Research, 1997, 19, 1881-1897.	0.8	24

#	Article	IF	CITATIONS
91	Nâ€ASSIMILATION IN THE NOXIOUS FLAGELLATE HETEROSIGMA CARTERAE (RAPHIDOPHYCEAE): DEPENDENCE ON LIGHT, Nâ€SOURCE, AND PHYSIOLOGICAL STATE 1. Journal of Phycology, 2002, 38, 503-512.	1.0	24
92	Coing for the slow burn: why should possession of a low maximum growth rate be advantageous for microalgae?. Plant Ecology and Diversity, 2009, 2, 179-189.	1.0	24
93	Predator-prey interactions between Isochrysis galbana and Oxyrrhis marina. III. Mathematical modelling of predation and nutrient regeneration. Journal of Plankton Research, 1995, 17, 465-492.	0.8	23
94	Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea. Progress in Oceanography, 2017, 157, 1-11.	1.5	23
95	Relationships between photopigments, cell carbon, cell nitrogen and growth rate for a marine nanoflagellate. Journal of Experimental Marine Biology and Ecology, 1991, 153, 87-96.	0.7	22
96	Interactions between nitrate and ammonium in Emiliania huxleyi. Journal of Experimental Marine Biology and Ecology, 1999, 236, 307-319.	0.7	22
97	In silico optimization for production of biomass and biofuel feedstocks from microalgae. Journal of Applied Phycology, 2015, 27, 33-48.	1.5	22
98	The simultaneous assimilation of ammonium and l-arginine by the marine diatom Phaeodactylum tricornutum Bohlin. Journal of Experimental Marine Biology and Ecology, 1986, 95, 257-269.	0.7	20
99	Cutting the Canopy to Defeat the "Selfish Gene†Conflicting Selection Pressures for the Integration of Phototrophy in Mixotrophic Protists. Protist, 2013, 164, 811-823.	0.6	20
100	The concept of "primary production―in aquatic ecology. Limnology and Oceanography, 1988, 33, 1215-1216.	1.6	19
101	Variation in elemental stoichiometry of the marine diatom <i><scp>T</scp>halassiosira weissflogii</i> (<scp>B</scp> acillariophyceae) in response to combined nutrient stress and changes in carbonate chemistry. Journal of Phycology, 2014, 50, 640-651.	1.0	18
102	Morphological Controls on Cannibalism in a Planktonic Marine Phagotroph. Protist, 2008, 159, 41-51.	0.6	17
103	Multivariate spectral analysis of pH SERS probes for improved sensing capabilities. Journal of Raman Spectroscopy, 2016, 47, 819-827.	1.2	17
104	Effects of N deprivation and darkness on composition of free amino acid pool in and on amino acid release from diatom Phaeodactylum tricornutum Bohlin. Journal of Experimental Marine Biology and Ecology, 1988, 119, 131-143.	0.7	16
105	Predator-prey interactions between Isochrysis galbana and Oxyrrhis marina. I. Changes in particulate δ 13C. Journal of Plankton Research, 1993, 15, 455-463.	0.8	16
106	Utilization of dissolved inorganic carbon (DIC) and the response of the marine flagellate Isochrysis galbana to carbon or nitrogen stress. New Phytologist, 1999, 144, 463-470.	3.5	16
107	Modeling DOM Biogeochemistry. , 2015, , 635-667.		16
108	Incorporating plankton respiration in models of aquatic ecosystem function. , 2005, , 248-266.		16

#	Article	IF	CITATIONS
109	Modelling temporal decoupling between biomass and numbers during the transient nitrogen-limited growth of a marine phytoflagellate. Journal of Plankton Research, 1993, 15, 351-359.	0.8	15
110	Interrelationships between the pathways of inorganic nitrogen assimilation in the cyanobacterium Gloeothece can be described using a mechanistic mathematical model. New Phytologist, 2003, 160, 545-555.	3.5	15
111	A Modelling Exploration of Vertical Migration by Phytoplankton. Journal of Theoretical Biology, 2002, 218, 471-484.	0.8	14
112	A Modelling Exploration of Vertical Migration by Phytoplankton. Journal of Theoretical Biology, 2002, 218, 471-484.	0.8	14
113	Food-density-dependent inefficiency in animals with a gut as a stabilizing mechanism in trophic dynamics. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1147-1152.	1.2	14
114	Niche separation between different functional types of mixoplankton: results from NPZ-style N-based model simulations. Marine Biology, 2020, 167, 1.	0.7	14
115	Operation of light-dark cycles within simple ecosystem models of primary production and the consequences of using phytoplankton models with different abilities to assimilate N in darkness. Journal of Plankton Research, 2003, 25, 83-92.	0.8	13
116	An automated HPLC method for the rapid analysis of paralytic shellfish toxins from dinoflagellates and bacteria using precolumn oxidation at low temperature. Journal of Experimental Marine Biology and Ecology, 1996, 197, 145-157.	0.7	12
117	The influence of changes in predation rates on marine microbial predator/prey interactions: a modelling study. Acta Oecologica, 2003, 24, S359-S367.	0.5	10
118	Coupling a simple irradiance description to a mechanistic growth model to predict algal production in industrial-scale solar-powered photobioreactors. Journal of Applied Phycology, 2016, 28, 3203-3212.	1.5	10
119	Toward a mechanistic understanding of trophic structure: inferences from simulating stable isotope ratios. Marine Biology, 2018, 165, 147.	0.7	10
120	Exploring the Trophic Spectrum: Placing Mixoplankton Into Marine Protist Communities of the Southern North Sea. Frontiers in Marine Science, 2020, 7, .	1.2	10
121	Application of a two-compartment one-toxin model to predict the toxin accumulation in Pacific oysters in Hiroshima Bay, Japan. Fisheries Science, 2003, 69, 944-950.	0.7	9
122	The role of coccolithophore calcification in bioengineering their environment. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161099.	1.2	9
123	Editorial: Modeling the Plankton–Enhancing the Integration of Biological Knowledge and Mechanistic Understanding. Frontiers in Marine Science, 2017, 4, .	1.2	9
124	Exploring evolution of maximum growth rates in plankton. Journal of Plankton Research, 2020, 42, 497-513.	0.8	9
125	Modelling the Effects of Traits and Abiotic Factors on Viral Lysis in Phytoplankton. Frontiers in Marine Science, 2021, 8, .	1.2	8
126	Acquired Phototrophy and Its Implications for Bloom Dynamics of the Teleaulax-Mesodinium-Dinophysis-Complex. Frontiers in Marine Science, 2022, 8, .	1.2	8

#	Article	IF	CITATIONS
127	â€~Boomâ€andâ€busted' dynamics of phytoplankton–virus interactions explain the paradox of the planktor New Phytologist, 2022, 234, 990-1002.	^{1.} 3.5	8
128	Mixoplankton interferences in dilution grazing experiments. Scientific Reports, 2021, 11, 23849.	1.6	7
129	Protoplasmic streaming of chloroplasts enables rapid photoacclimation in large diatoms. Journal of Plankton Research, 2021, 43, 831-845.	0.8	6
130	Mixotrophy Among Freshwater and Marine Protists. , 2019, , 199-199.		5
131	N-ASSIMILATION IN THE NOXIOUS FLAGELLATE HETEROSIGMA CARTERAE (RAPHIDOPHYCEAE): DEPENDENCE ON LIGHT, N-SOURCE, AND PHYSIOLOGICAL STATE1. , 2002, 38, 503.		4
132	Deuterium in marine organic biomarkers: toward a new tool for quantifying aquatic mixotrophy. New Phytologist, 2022, 234, 776-782.	3.5	4
133	Coccolithophorids, Nutrients and the Greenhouse Effect. Chemistry and Ecology, 1990, 4, 109-116.	0.6	3
134	Plants Are Not Animals and Animals Are Not Plants, Right? Wrong! Tiny Creatures in the Ocean Can Be Both at Once!. Frontiers for Young Minds, 0, 7, .	0.8	2
135	A modelling exploration of vertical migration by phytoplankton. Journal of Theoretical Biology, 2002, 218, 471-84.	0.8	2
136	Modelling interactions between phytoplankton and bacteria under nutrient-regenerating conditions. Journal of Plankton Research, 1995, 17, 1395-1395.	0.8	1
137	chapter 9 Ocean Acidification with (De)eutrophication will Alter Future Phytoplankton Growth and Succession. , 2017, , 207-218.		1
138	Subtle Differences in the Representation of Consumer Dynamics Have Large Effects in Marine Food Web Models. Frontiers in Marine Science, 2021, 8, .	1.2	1
139	Fluctuations in the intracellular amino acids of <i>Gloeothece</i> during nitrogen fixation and following addition of ammonium. Biochemical Society Transactions, 1989, 17, 925-926.	1.6	0
140	and goodbye for now!. Journal of Plankton Research, 2007, 29, 1021-1021.	0.8	0
141	AFestschriftin honour of Professor John A. Raven. Plant Ecology and Diversity, 2009, 2, 107-110.	1.0	0
142	Exploring the Implications of the Stoichiometric Modulation of Planktonic Predation. , 2016, , 77-89.		0